
Why we Code
pramsey@carto.com

2007.foss4g.org

The first time I had the pleasure of addressing a FOSS4G plenary
session
was as the chair of the 2007 conference,
in my home town of Victoria.
So, before I start, congratulations Michael,
and the rest of the local committee on bringing together this 2017
edition.
I remember the excitement and gratification
of seeing the world show up in my town,
and start talking about open source and software,
it's pretty unreal.

2007 : victoria
2009 : sydney
2011 : denver
2013 : nottingham
2015 : seoul

Since then, I've gotten a chance to keynote in
Sydney, Denver, Nottingham, and Seoul.
So, this is the 6th time I've been allowed
to stand in front of a FOSS4G plenary and speak.
And, by accident, if not design,
I seem to be on a biennial rotation.
I also seem to be stuck in a rut.

2007 : welcome
2009 : economics
2011 : economics
2013 : economics
2015 : economics

After my turn as conference chair,
I talked in 2009, 11, 13 and 15 about,
<x> open source economics,
<x> open source economics,
<x> open source economics
and also
<x> open source economics.

2017: economics

Today will be no exception.
I have my reasons!

open source is a
system

Open source is a social system,
and when you're embedded in a system
it's good to know how that system works.

systems vs. stories

And I think it's worthwhile to talk about the systems
because so many of the tales
we tell ourselves about open source
are rooted in cultural myths about
individual achievements and choices,
and ignore the systems
that individuals are working within.

Let me put it in terms you all can understand:

Is the problem with galactic governance
the individual performance of Darth Vader
as a particularly cruel and callous manager,

or is the problem the
strictly hierarchical nature of Imperial system?
The Darth Vader theory certainly makes for better storytelling.

But an appreciation for the
systemic roots of harsh Imperial governance
would probably lead to a more just Galactic republic,
at least, in the long run.

anyway…

But anyways…

“why we code”

I chose "Why we Code"
as the title for this talk by way of reference to "Why we Fight",

which was a series of World War 2 films
produced by the US Government
and directed by Frank Capra.

Obviously, created within the context of a mass war mobilization,
the films were propaganda.
But "Why we Fight" was an odd piece of propaganda.
First, it was 7 hour-long films.
Image that, in our era of 15 second attention spans.

Second, the films spent a lot of time on background:
the history, the geography, the context, and how those informed the
goal.
Which, to be fair, was total victory.
But a great deal of effort was spent to build a rational argument,

when a far simpler approach would have been an emotional 15 second
ad.
So ”Why we Fight" was propaganda,
but nuanced propaganda.
Which is why I chose "Why we Code" for today.
Because there’s a 15 second sound-bite answer to that question…

nuanced
propaganda

And then there’s what I’m going to subject you to this morning.

I have some nuanced propaganda for you today.
Nuanced because too many of our
discussions of open source and other alternatives
are simplified down to black and whites.
Because too often we ignore the
economic and cultural context open source is embedded in.

“why we code”

"Why we code"?
There's a lot of easy answers,
which are variations of pure propaganda.
They are mythic answers, emotional ones, they are easy to visualize.

“freedom!!”

"Freedom!" is a favourite.
Software free to be read,
free to modify, and
free to redistribute with modifications.
We code free software for idealism.

“glory!!”

"For the glory of it!" is another.
We code and release as open source for ego-gratification,
to generate admiration in our peers.

“scratch an itch!!”

"Scratch an itch" is also a popular reason.
We code for localized practical reasons,
we code to problem solve.
But..,

“why code”we
All these easy answers depend on an unspoken assumption.
They make a big guess about who "we" is.
Who is this "we", doing all this coding,
when we talk about "why we code"?

The Lone Ranger and Tonto
are riding alone across the plains
when over the hills in front of them

there comes a war party of blood-thirsty Sioux warriors.
"This looks like trouble, Tonto, we'd better run" says the Lone Ranger,
and they double back fleeing the Sioux.
Well, they haven't been riding 5 minutes

when they crest a hill
and see coming up towards them
a whole army of Cree soldiers,
carrying death-masks and armed with muskets.
"Ride hard, Tonto, this is our last chance." the Lone Ranger cries,
and they turn left and ride hard down the slope.
They turn and gallop down through a small copse of trees,

and coming out
they run headlong into a party of Lakota,
who whoop and bear down on them,
their intentions clear.

As the circle of Native warriors closes in on them,
the Lone Ranger turns to Tonto and says,
 "Well Tonto, it looks like we're done for."

“what do you
mean, ‘we’,

white man?”

To which Tonto replies:
"What do you mean, 'we', white man?"

meyou

we
Tonto’s right,
“we” is a very contextual word,
and we inhabit a lot of different “we”s simultaneously

meyou them

we

we

even within narrow fields like
working with computers and
writing software.
Who are "we", anyways, when "we" code?

lone hacker

The mythic, easy answer,
the simple propaganda answer,
is the lone hacker.
We answer "why we code" by
ginning up a crude cultural caricature.

linus torvalds

And so the canonical open source creator is Linus Torvalds,
writing an operating system in his bedroom
as an undergraduate student in Finland.

guido  
von rossum

Or it's Guido van Rossum
building Python as a Christmas project to "keep himself occupied",
because
what else would you do over Christmas?

richard 
stallman

Or it's Richard Stallman
building GNU Emacs here in Cambridge, Massachusetts,
creating the first brick in the GNU free software edifice.

mythic 
hackers

But, the easy, mythic answer is wrong.
Or, very incomplete.
At best it starts right,
then tends over time towards gross wrongness.

Linus started the Linux kernel, alone,
in his bedroom, 26 years ago, this is true.

intel : 13%
red hat : 8%

linaro : 4%
samsung : 4%

suse : 3%
ibm : 3%

w
ho is linux?

But today Linux is maintained mostly by corporations.
Intel, Red Hat, Linaro,
Samsung, SUSE, and IBM account for
a third of kernel development.
So rather than talk about grand heroes,
I'm going to talk about generic agents,
who each play a role in the
interlocking
economies
of open source.

software

individual user

individual creator

institutional user

institutional creator

The agents are:
The software itself.
Individuals, who use the software,
 and who create the software.
And finally institutions:
 corporations, governments, NGOs, universities,
 and so on,
 who use the software and
 who create the software.

All these agents interact, but within different economies.

attention economy
Different pieces of software compete
within an attention economy.

gift economy
Different participants in an
open source software community
exchange value within a gift economy.

cash economy
And of course individuals and institutions
interact within our all-consuming
cash economy.

software

individual user

individual creator

institutional user

institutional creator

Let's start with the software itself,
and the "attention economy" it lives in.

money attention

millionaire celebrity

cash
economy

attention
economy

The idea behind an "attention economy"
is that in a post-scarcity world,
in a world where people's basic needs are already met,
people will not compete for physical resources or wealth.
What they will compete for, is attention.
We already have a basic human attention economy in place,
and we have a name for people who are "attention rich",
they are called "celebrities".

As in the cash economy,
the rich often get richer,
<x> as attention begets more attention.
And attention is surprisingly fungible,
<x> attention earned in one field
can often be converted into attention in another.
However, a true attention economy requires a post-scarcity world,
where or day-to-day physical needs met by default,
and we don't yet live in a post-scarcity world.

money attention

millionaire celebrity

cash
economy

attention
economy

So we humans have a hybrid cash-and-attention economy.
This can lead to some odd scenarios
where our cash economy and attention economy confer
very different amounts of wealth
to the same person.

For example,
the case of the YouTube celebrity,
who amassed millions of followers,
but who had to shoo away her fans
so she could do the waitressing job
that actually paid her rent.
She was attention rich, but cash poor.

Now, keep an attention economy in mind,
but replace humans with software.

food n/a
sleep n/a

clothing n/a
attention attention

Open source software lives in a software attention economy,
in which software trades utility with humans in exchange for attention.
Open source software has very few needs.
<x> It doesn't need food or sleep or clothing.
It can reproduce perfectly at zero cost via copying.
It's almost immortal.
The only thing software needs to stay alive
is at least one person that cares about it,
<x> a little bit of attention.
Because operating systems change,
new formats are developed, small bugs are found.
Unmaintained, software will die:

+

emacs is dead

long live GNU emacs

the original Emacs text editor
ran on the PDP-10 minicomputer,
that code is dead;
Richard Stallman's GNU Emacs,
which has been maintained continuously since 1984,

will run on your Android phone, if you wish.

attention economy
In this software attention economy,
open source software competes for attention.
Software that accrues more attention develops faster,
it gets better documentation,
it gets a snazzier web site,

attention economy
and these things in turn allow the software
to gain yet more attention.
Just like the dollar economy,
in the software attention economy,

attention economy
the rich get richer,
and everybody else gets squeezed.
Money begets money,
attention begets attention.

“check out  
my documentation,  
my snazzy web site,  
my easy quick start”

attention economy
So, there's a reason smart open source projects
spend a lot of time on their documentation,
on their quick-start guides
and their one-click downloads:
to grow the overall pool of people around the software.

attention economy
The overall pool of users will include
<x> some percentage of power users and documenters and
evangelists,
and that sub-pool will include
<x> some percentage of bug reporters and fixers,
and that sub-pool will include
<x> some percentage of core developers and maintainers.
Job one for any project in the attention economy
is attracting more attention.
So, who can provide attention to hungry software?

people write open source
software!

institutions don’t write
open source software

Individuals!
Institutions can too, but
only via the mechanism of individuals.
Intel doesn't write Linux patches,
people on the Intel payroll write Linux patches.

open source is people!

Just like solent green,
open source is people.
Open source is people.

software

individual creator

institutional user

institutional creator

individual user

Let's start with people who use software,
the individual software consumers.

uses open source but  
does not contribute

unconcerned with  
software freedom

maybe donates?

individual user
On the one hand, individual consumers
aren't very interesting to a discussion of free software
because they don't contribute to free software directly,
and don't really care about software freedom as a concept.
They participate in the cash economy and
might occasionally contribute to a
proprietary software program with a little money now and then,
but software freedom per se
is irrelevant to them.
That might sound a bit dismissive, but we can infer how much
individuals care about software freedom from the market performance
of user-facing free software.

largely unaffected

and

by the rise of

In the office automation world,
the rise of an acceptable open source alternative to Microsoft
barely dented the dominance of Office.
OpenOffice and then LibreOffice have been around a long time,
but Office reigned supreme until the coming of the cloud.

finally challenged
for consumer

dominance  
by

In the end it was the extra
convenience of Google Docs for sharing and collaboration,
along with a zero dollar price point,
that finally threatened the dominance of Office in a meaningful way.

In the browser world, back in the early aughts,
it looked like Firefox
proved that "open is better",

supplanted by

as it rose and took over from Internet Explorer.
But it turned out that actually "better is better".
Users moved to Firefox because it was better than IE.

supplanted by

in turn supplanted by

And now, users have freely migrated back away
from Firefox to Chrome, Safari,
and even back to IE
as each took a turn
as the best performing, cleanest alternative
on different desktop and mobile platforms.
Individual consumers just
don't care very much about software freedom.

“i don’t care about software freedom”,

“because i don’t write software!”

“duh.”

In fairness, to exercise software freedom,
it generally helps to understand how to
write and build software,
and most individual consumers
just don't have those skills.
Now, that doesn't mean software freedom
has no constituency among people who
cannot write or modify software themselves,
it just means their experience of software freedom
very indirect.

“i don’t care about software freedom”,

“because i don’t write software!”

“duh.”

But if individual consumers DID care,
it would dramatically alter our relationship with digital technology.

This is probably why Richard Stallman is
still willing to talk to people about software freedom,
after all these years:
if all people cared about it, just a little,
we would all be a lot more free.

Congress shall make no law respecting an
establishment of religion, or prohibiting the free
exercise thereof; or abridging the freedom of
speech, or of the press; or the right of the people
peaceably to assemble, and to petition the
government for a redress of grievances.

Take a look at the First Amendment of the US Constitution:
 Congress shall make no law respecting an establishment of religion,
or prohibiting the free exercise thereof;
or abridging the freedom of speech, or of the press;
or the right of the people peaceably to assemble, and to petition the
government for a redress of grievances.

criticize the government

sue the government

assemble to protest the
government

1st amendment  
protects people who

So, the people most
directly served
by the 1st amendment are
those who publish criticisms of the government,
or assemble to protest the government,
or sue the government for misconduct.

criticize the government

sue the government

assemble to protest the
government

1st amendment  
protects people who

but, 
most people 

 don’t do
those things

Now, while I understand that
those categories of people
have grown a great deal in the last year,
they do not include all the people. (At least not yet.)
There are lots and lots and lots of people
who have no words to publish, people
who do not wish or have time to assemble, people
who have no case to litigate.

criticize the government

sue the government

assemble to protest the
government

1st amendment  
protects people who

but, 
most people 

 don’t do
those things
nevertheless, 

most people
won’t give up 

the 1st 
amendment

And Yet.
And yet, I wager,
even those who find nothing to criticize
or protest
or litigate about
would be loath to see the 1st amendment repealed.

They don't directly exercise the freedoms of the 1st amendment,
but they do appreciate
the freedom it provides them at a remove.

modify software
redistribute their  

modifications

examine and  
redistribute software

software freedom  
protects people who

Imagine if every individual consumer
valued software freedom as much
as they value freedom of speech?
How would our conversation about
technology and privacy and
control of our personal data be different then?

modify software
redistribute their  

modifications

examine and  
redistribute software

software freedom  
protects people who

but, 
most people 
 don’t care

However, for the moment, they don't care.
When individual consumers use open source,
the reasons
don't have anything to do with software freedom:
they use it because
it doesn't cost money;
or because it works better than the alternatives for their purposes;
or their nerdy niece installed it for them.

software

individual creator

institutional user

institutional creator

individual user

So let's move on
to the individual
open source
software makers.

mythic 
hackers

We've already covered the mythic makers,
the hacker-in-the-basement archetype.
There's a place for the mythic framework,
but we have to be really careful about applying it,
because it's too easy to cover over complex truths with simple patterns.
Some projects do start with a single contributor,
and add on extra contributors over time.
But a surprising number don't,
even ones you might think have a clear provenance.

paul: “a spatial type in postgres 
 would be awesome”
 
dave: “hold my beer”

People sometimes introduce me as the "founder" of PostGIS.
And I am a person who has had a long,
prominent association with the PostGIS project.
<x> But way back in 2001,
when I said "hey, it would be great to have a spatial data type in
Postgres",
it was Dave Blasby who said, "yes, and I know just how to do that"
and actually wrote the code.

da
ve

pa
ul

It wasn't me.
Now, at the time,
Dave worked at my consulting company, Refractions.
Other folks at the company, Chris and Jeff,
wrote some early code.
So, who founded PostGIS?
There’s not a singular answer.

there are  
many co-founders,
and starting is just

the first step

So I usually say "no, no, introduce me as a co-founder",
but there's even more to the story than that, which I'll get to later.

Let's put the mythic individuals aside for a moment,
because non-mythic individual makers are the real story.

have a problem
find some code
ask a question
answer a question
recommend the code
fix the code
enhance the code

They have a problem to solve.
<x> They find the open source software that can solve it. They use it.
It works.
<x> They ask a question about the software, they get an answer.
<x> They see a question, they provide an answer.
<x> They are asked if they use the software, they provide a reference.
<x >They find a shortcoming. They find a way to apply effort to getting
a fix added.
<x> They need a new feature. They find a way to apply effort to
getting that feature added.
Note that there's a

have a problem
find some code
ask a question
answer a question
recommend the code
fix the code
enhance the code

value

value

continuum of involvement here. At the start, the software and project
are
<x> adding value to the individual. And the end, the individual is
<x> adding value to the software.
At the start, the individual acts alone. At the end, the individual is
working as part of a community of interest around the software.

gift economy
Once a project has sufficient attention to grow
a community of interest of users and developers,
another economy comes into being within that community:
a gift economy.

gift economy

A gift economy is a mode of exchange
where valuables are not traded or sold,

but rather given without an explicit
agreement for immediate or future

rewards.

A gift economy is one in which valuables are not traded or sold,
but are given
without an explicit agreement
for immediate or future rewards.

The classic example of a "gift economy"
is the potlatch tradition of the
First Nations peoples of the Pacific northwest.
Before European colonization in the 1800s,
a powerful chief would demonstrate his power,
and amass influence, not by hoarding more and more wealth,

but by holding a huge feast, a "potlatch"
and distributing all his wealth to other families in his tribe
and to neighbouring chieftains.

but by holding a huge feast, a "potlatch"
and distributing all his wealth to other families in his tribe
and to neighbouring chieftains.
Western capitalistic folks
find it hard to understand the rationale
behind a gifting culture,

to the extent that the ceremony was banned in Canada,
from 1885 until 1951.
This picture is from a modern day ceremony in the 1980s.

gift economy

influence in  
open source communities  

is directly correlated  
with giving (of help and time)

In open source communities,
the most influential people are almost always
the most frequent and consistent contributors,
the ones who give of their time most freely.

tom lane
and

Someone like Tom Lane is a leader in the PostgreSQL community
not (just) because he is very very smart
(though he is)
but because he holds an ongoing potlatch with his technical skills.
He willingly answers questions,
from all different members of the community;
he swiftly fixes problems brought to his attention;
he takes on difficult core problems of development.
He gives heavily of his time and skills,
and in turn amasses influence.

gift economy

“influence” = “social capital”
(see? it’s kind of like money…)

Another word for "influence" is "social capital".
When I answer your PostGIS question on the mailing list,
I do not receive cash payment but
(assuming you aren't a sociopath)
I incur a small sense of reciprocal obligation in you.
I earn a little bit of "social capital".

gift economy
social capital can buy:

• a fair hearing
• a swift answer
• the above in other

communities too

What good is "social capital"? Here's some things you can buy with
"social capital".
<x> Communities are often skeptical of big new features or changes,
because they can be disruptive;
someone with social capital can get a fair hearing on a big scary new
feature.
<x> A developer may not be expert in all areas of a code base;
but, if she has social capital
she can tap other experts to get a swift answer to her questions.
<x> Also sufficient standing in one community
enables direct collaboration of one project with another:
when Tom Lane makes a comment about PostGIS, I listen;
if he provides a patch, I apply it.
He has social capital that is transferrable.

gift economy
tom lane has:
• a huge amount of

social capital
with the postgres
community

Now, it might seem that Tom Lane is getting a raw deal:
in return for hours and hours of
highly skilled effort invested in the Postgres community,
all he gets back is influence and "social capital" in the Postgres
community.

That's a pretty circular benefit:
in return for being a gracious expert
he gains privileged access to other gracious experts.

Not something that is going to put food on the table.

gift economy
tom lane has:
• a huge amount of

social capital
with the postgres
community

tom lane is highly
valued by:
• companies that

need or sell
postgres
expertise

However,
because he is an influential contributor to an important software
project,
because he is the owner of a huge amount of social capital in the
Postgres gift economy,
 he is also a highly desirable employee for companies that use or
support that software.
Over the past 10 years,
Tom Lane has worked for RedHat, for Salesforce.com
and currently for Crunchy Data.

cash So, here the cash economy finally rears its head, as the three
economies interact.
- Crunchy Data pays some PostgreSQL people, like Tom

giftcash - Who work as part of the Postgres community
- And generate social capital and influence for themselves

attentiongiftcash - And apply attention to the Postgres software
- So the software lives and grows and becomes useful to other
organizations

attentiongiftcash

corp

- Who may in turn pay Crunchy Data ...
And then the cycle repeats.

cash economy
The cash economy is the economy we
worry about the most when thinking about open source,

cash economy

open source is great at
creating value

open source is terrible at
capturing value

and for good reason:
open source is great at creating cash value,
but very poor at capturing it.

https://www.fordfoundation.org/library/reports-and-studies/roads-and-bridges-the-unseen-labor-behind-our-digital-infrastructure/

Last year, a study by Nadia Eghbal for the
Ford Foundation investigated the
deficit in spending on open source software infrastructure.

digital 
infrastructure

frameworks libraries

Software frameworks like Django or Rails,
libraries like jQuery or OpenSSL.
Software infrastructure.
Infrastructure is the least visible open source software,
it's the kind of thing you use without even knowing you're using it.

What she found was dismaying:

These projects had present, not
future, value. They were actively

used by Facebook, Instagram,
Pinterest, Netflix, even governments.

They directly caused tech’s rapid
rise, ... But they hadn’t captured the

financial value they deserved.
‒ Nadia Eghbal

“These projects had present, not future, value.
They were actively used by Facebook, Instagram, Pinterest, Netflix,
even governments. They directly caused tech’s rapid rise, ...
But they hadn’t captured the financial value they deserved.”
These infrastructural projects were
disproportionately maintained by individuals or
part-time by small groups.”

So,
The software is loved by the marketplace.
The maintainers… not so much.

@pydanny
I personally get regular demands for
unpaid work… by healthy high profit
companies large and small…  
If I don’t respond in a timely fashion, if
I’m not willing to accept a crappy pull
request, I/we get labeled a jerk

I personally get regular *demands* for unpaid work…
by healthy high profit companies large and small….
If I don’t respond in a timely fashion,
if I’m not willing to accept a crappy pull request,
I/we get labeled a jerk.

@andrewgodwin
Just relying on people’s good will isn’t
going to work, we’ll end up
disproportionately appealing to
independent developers or developers
on a personal level and that’s not as
sustainable I don’t think.

Just relying on people’s good will isn’t going to work,
we’ll end up disproportionately appealing to
independent developers or developers
on a personal level and that’s
not as sustainable

@shazow
Publishing and contributing to open
source is going to continue happening
regardless whether I’m getting paid for
it or not, but it will be slow and
unfocused. Which is fine, it’s how open
source work has always worked. But it
doesn’t need to be this way.

Publishing and contributing to open source
is going to continue happening
regardless whether I’m getting paid for it or not,
but it will be slow and unfocused.
Which is fine, it’s how open source work has always worked.
But it doesn’t need to be this way. 

This is not just a problem for generic infrastructure projects.
We in geospatial are not immune to
infrastructure under-investment either:

martin
davis

maintains
jts

in his spare tim
e

Martin Davis,
the core developer of the JTS algorithms library,
used by almost all our open source geo software,
either directly or via the GEOS C++ and JSTS Javascript libraries,
has a day job that involves precisely zero JTS work.

martin
davis

maintains
jts

howard
butler

maintains
proj4

in his spare tim
e

in his spare tim
e

The Proj4 reprojection library,
which also underlies almost all our software,
is maintained by Howard Butler,
whose consulting company works mostly in point clouds:
there's no directly funded work for it.

even
roualt

maintains
gdal

martin
davis

maintains
jts

howard
butler

maintains
proj4

in his spare tim
e

in his spare tim
e

in his spare tim
e

The GDAL image library,
which is also used in almost all our software,
is maintained incredibly well by Even Roualt,
but as a contract developer Even is usually paid
to add new features and formats to GDAL.
He provides most of the critical maintenance,
stability and release work on his own time.

cash economy

need money?
just use a

proprietary
licensing

model!

but that
removes all
the software

freedom

The question is, how can it be another way?
The knee jerk reaction is to say
"hey, the proprietary model works to
force value from the cash economy into the software attention
economy,
use that!".
<x> Unfortunately,
the two models cannot be reconciled:
proprietary software depends on the restrictions of use,
while open source is all about removing those restrictions.

cash economy

community property,
public goods,

free things have value

If we are going to keep our open source ecosystem healthy,
we need to start recognizing
the value
 of free things,
the value
 of communal property.

Back home in Victoria,
there is a petting zoo in the central park.
Admission is free by donation.

I always donate.
Now why would I do that?
I can get in for free!
I donate because I like the zoo.
Because I want it to still be there the next time I go to the park.
I donate because the baby goats are nice.
Everyone likes baby goats.

I
software
freedom

I
I also like open source,
because it has software freedom.
As a consultant,
I've designed systems,
with both open source and proprietary components,
and my reasons for preferring open source components have been

no license overhead

transparency of  
components

flexibility of components
access to expertise

software
freedom

Iwhat i like:
I value the avoidance of license overhead,
both the monetary overhead of buying the stuff
and the administrative overhead of maintaining license compliance
<x> I value the transparency of components,
avoiding expensive black box debugging
and custom shims between theoretically off-the-shelf proprietary
software
<x> I value the flexibility of components,
allowing features to be added without re-architecting the system,
pushing necessary improvements into the upstream projects
<x> I value the access to expertise (often core developers) via the open
source community,

no license overhead
transparency of  
components
flexibility of components

access to expertise

software
freedom

I
what i like:

Except for the last item,
my reasons for preferring open source components
all flow
to some extent
from the principles of software freedom.
The freedoms to examine, modify and distribute the source code.
So, those are MY reasons for preferring open source components.

http://opensourcesurvey.org/2017/

Not necessarily everybody's.
This year, Github ran a randomized survey of
what they said was:
"anyone who uses or otherwise engages
with open source technology and development,
whether passively or actively through contributions."

From the survey,
the top two reasons people choose
open source software over proprietary software are:
"stability", and "security".
Now, the open development process favoured by open source
communities tends to produce stable and secure software,
but neither stability nor security naturally follow from software
freedom.
Proprietary software is not automatically less stable, or less secure.
This is really worrying to me.
The top reasons cited for using open source software have nothing to
do with the open source nature of the software.

software

individual creator

institutional user

institutional creator

individual user

The implication is that,
for pure users, at least in this survey,
institutions are no different from individuals:
as long as the cost is equivalent, they'll choose the stable, secure
product.

I meh

Currently that happens to be open source software,
quite frequently, but presumably that could change any time.
So we cannot necessarily count on institutional users
to keep baby goats warm and fed.

software

individual creator

institutional user

individual user

institutional creator

What about institutional contributors, why do they code?
The field of institutional contributors is incredibly diverse,
and there are a lot of reasons they contribute.
Here are some reasons
different kinds of institutions have for contribution,
arranged in order of enlightenment.

institutional creator

open source support companies
• must employ experts with

deep knowledge
• need access to, reputation

in community

enlightenment

Open source support companies
like Red Hat or Boundless or Hortonworks
are obviously very enlightened,
you can see they score four buddhas on the enlightenment scale.
And this should be no surprise…
Their whole value proposition
is having the best expertise on the best software,
so investment in open source is a no-brainer.

institutional creator

software-as-a-service companies

• built on open source technology
• depend on deep knowledge for

reliability, new features

enlightenment

Software-as-a-service companies
like Carto or Mapbox
usually are built on open source,
because it gets them to market quickly,
with flexible components at low cost.
And once in the market,
the value proposition of a SaaS company
 is about features, reliability and performance.
An enlightened SaaS company will know it needs
 direct access to expertise on the components their software is built
with,
or risk losing customers to costly downtime or surprising bugs.

institutional creator

proprietary software companies
• sometimes embed open source
• may realize they are exposed to

risk if they don’t have skills on
tap

enlightenment

Proprietary software companies
like Microsoft or Esri sometimes embed
some piece of open source in their larger software application.
Embedding saves them development time and effort.
If they are enlightened, they will maintain a relationship
 with the open source community
in case they need extra features
or encounter a bug they cannot quickly fix themselves.
But honestly, most don’t.

institutional creator

systems integration companies
• often build systems with open

source
• frequently ignore the value that

open source brings to their solutions

enlightenment

Systems integration consultants
like IBM or HP or CapGemini
build systems for customers using open source components.
They may sell themselves as experts in the open source components,
or they may just use it under the covers without telling the customer.
Regardless, an enlightened consultant will maintain a relationship
with the open source community
in case they need extra features
or encounter a bug they cannot quickly fix themselves.
But again, most don’t.

institutional creator

big internet/cloud companies
• built on and originating their own

open source
• recognize their risk exposure and

need to engage community

enlightenment

Great big companies
like Facebook or Google or Salesforce
contribute because they have a large exposure
to a particular piece of software,
and the recognize the risk and opportunity in that exposure.
Even non-technology companies can be enlightened.
Enlightened insurance companies are known to keep
a core open source database developer on staff for support purposes.
Enlightened high frequency trading firms
employ linux kernel developers for performance tweaks.

institutional creator

most companies / institutions
• might build systems on open source
• treat it like magic fairy dust

enlightenment

All that said,
most organizations show an incredibly low degree of enlightenment.
Many companies or governments or NGOs USE open source.
Very few of those organizations
recognize their dependence on open source projects
and direct their resources accordingly.

enlightened
institutions
large

• know they depend
on OSS

• hire a developer

small
• know they depend

on OSS
• buy a support

contract
• retain a contractor

For projects that are visible,
projects that organizations know they are using and depending on,
it's possible there will be enough enlightenment
that organizations will willingly devote resources to their upkeep:
they will hire their own resources if they are big enough;
or, if they are smaller they will purchase support from a support
company.
But, relatively few of them seem to be that enlightened.

“My god, all we're
doing is selling

insurance! How is that
hard to understand?”

eddie pickle, on the difficulty of
selling open source support

Back when I was at Boundless,
which is a geospatial open source support company,
the CEO at the time, Eddie Pickle, used to say to me:
"My god, all we're doing is selling insurance!
How is that hard to understand?"
And he was a little exasperated,
because it seems very very hard indeed
for the customers to understand.

open source cash economy
is like an

open heath insurance market

• when you feel OK,
you don’t think
you need it

• when something
goes wrong, you go
to emergency

This is the USA, so everyone has purchased health insurance, right?
It just makes sense, after all, because, you know, you might get sick?
Except, we know that open health insurance markets don't work that
well,
that all too often, people do not or cannot get insurance.
Left to their own devices,
the young and healthy often don't bother to get health insurance,
so the insurance markets are dominated by the old and sick,
premiums go up,
and when catastrophe strikes
the uninsured show up at the emergency room.

Open source users also go to the emergency room.
The strange voicemail messages,
the private emails with "URGENT" in the subject line,
the twitter and github @harassment.
These are all things that open source developers have experienced.
These are all trips to the software emergency room
that some users want to get for free.

“My god, all we're
doing is selling

insurance! How is that
hard to understand?”

eddie pickle, on the difficulty of
selling open source support

"My god, all we're doing is selling insurance!
How is that hard to understand?"

the good news

Still, there's a lot of good news in the open source economies:

attention the attention economy of open source software
is good at weeding out weak projects,
and amassing critical numbers of developers
around successful projects

attentiongift the gift economy of open source communities
promotes collaborative instincts
and can provide core contributors with
the leverage necessary to make a living in the cash economy

attentiongiftcash the cash economy is doing a passable job
funnelling resources into the larger,
more visible open source projects,
from support companies,
from SaaS companies and
from large institutions enlightened enough to recognize
that buying "insurance"
for their software assets
makes sense

the bad news
But there's a no small amount of bad news too:

infrastructure
• underfunded
• ignored
• taken for granted

user facing
• funds favour

featuritis
• maintenance is

considered
“overhead”

open source cash market 
poorly directs funds

the invisible but necessary infrastructure projects
are chronically under-funded,
and user facing projects
all too frequently suffer from
featuritis as funding and effort crowds around
adding the next cool thing, rather than making
the current thing more stable or faster

• Frama-C
• GnuPG
• Network Time Protocol
• OpenSSH
• OpenSSL

• OWASP Zed Attack
Proxy

• Debian Builds
• Fuzzing Project
• Linux Kernel Self

Protection Project

Some of the largest companies,
the Googles and Facebooks and Microsofts,
have put together a small program called the "Core Infrastructure
Initiative"
to fund open source infrastructure,
but their focus is generic network and coding infrastructure.

If we wait for the Core Infrastructure Initiative
to help with geospatial open source infrastructure,
we'll be waiting a long long time.

We need X.
We spend more

than that on
breakfast cereal!

There are great things to be done here,
there is a match made in heaven here,
because open source projects
require very few resources,
relatively speaking,
and institutions control a great many resources.

do you work for an
enlightened
institution?

I keep talking about institutions,
because the cash resources of institutions
dwarf the amount of
spare time and unpaid vacations
that open source community members
can spend on software.

allows you to work on OSS?
has an OSS support contract?
uses an OSS contractor?
uses a SaaS vendor that
supports OSS?
donates to a program like Core
Infrastructure?

If you are here as an employee of an institution,
your institution is probably already enlightened,
but just to make sure, here's a checklist:
- Does your institution allow or encourage you or a co-worker to spend
time improving the projects you use?
- if not, does your institution have a support contract with an open
source support company?
- or, does your institution have a direct contract with an open source
developer?
- or, does your institution use a software-as-a-service that supports
open source?
- or, does your institution donate to a program like the "Core
Infrastructure Initiative"?

• mailing lists
• source control
• wiki space
• download space

no longer critical
• risk evaluation
• infrastructure

support
• shared funding

now critical

OSGeo may have a role to play here,
if they are able to take it up.
Back when OSGeo was formed, communities lacked good technical
infrastructure,
and OSGeo provided some:
mailing lists, source repositories, ticket trackers.
But technical infrastructure is not a limiting step anymore.
The missing piece now is
financial support for core software infrastructure.
For projects like GDAL, and Proj, and JTS.
Projects that underlie all the other,
more visible software, that we use every day.

I
If we're going to start telling users that "admission is by donation",
if we are going to make an argument for
taking open source sustainability seriously,
we need to provide a channel for that support to flow to the
developers.
OSGeo could rise to the challenge.
Somebody else could.
I'm just going to leave that out there.

We need X.
We spend more

than that on
breakfast cereal!

So, I've laid down a lot of responsibility
at the feet of employees of institutions.
Boring responsibility for making sure
old software is maintained.

But that's not all there is.
Institutions can be important innovators,
if their employees are willing
to grasp the role
and take the plunge.

origins of

story
dave & paul  
 and jeff & chris  
 and phil & graeme
 and regina & carl & frank
 and …

and

I want to finish my story about the origins of PostGIS,
because there's a character in there I didn't mention,
who you've never heard of.
<x> He's not a mythic open source founder.
He's not a coder.
But without him, there might not be a PostGIS.

2001

So, back in 2001, after I said "wouldn't it be great"
and Dave said "yes, and I can do that",
and after a few weeks of work,

postgis 0.1

we had a primitive version of PostGIS.
But it didn't do much, beyond storage and retrieval,
it was lacking most of the
computational geometry algorithms we expect in GIS.

his vision:  
GIS without a GIS

Fortunately a civil servant in the
British Columbia government had a vision
for a toolkit to allow the government
to build GIS data processing systems
without installing big GIS software packages.

secured federal funds

He secured funding from the federal government
via an industrial investment program,

contracted local
developer

and contracted with a local company to write the software.
The software he contracted for was called the Java Topology Suite,

developer:  
martin davis  

software:  
java topology suite (jts)

 JTS,
and the contract he wrote
specified that it be delivered under an open source license.
Because it was open source, we were able to port that
software to C++ and then use it,

postgis 0.8

for what became PostGIS 0.8,
the first version that could do real geo-processing.

first postgis  
production system

That same civil servant also contracted with us
to manage the provincial road centerline network
and encouraged us to use PostGIS as the database for the project.

That was the first production deployment of PostGIS.
He also encouraged us
to use hours from the contract
to improve PostGIS
to handle the roads data faster and more accurately.

not afraid of
open source bids

When we bid on contracts to manage and improve hydrography data,
he didn't worry that our solutions were based
on PostGIS and open source Java
instead of Oracle and Esri,
he just made sure we could produce the results he wanted.

led to postgis 1.0
performance  

lift

The improvements Dave made to PostGIS
during those contracts
led directly to the PostGIS 1.0 release.

mark  
sondheim

JTS/GEOS/JSTS
are used by

You've never heard of this guy, his name is Mark Sondheim,
but you've probably used geospatial software
that works because of decisions he made,
over 15 years ago,
as an employee of a big boring,
government institution.

All these projects
(QGIS, PostGIS, Fiona, GDAL,
GeoServer, GeoTools, Turf.js,
GeoDjango)
use GEOS or JTS.

mark  
sondheim

JTS/GEOS/JSTS
are used by

We have a whole track just for PostGIS here at FOSS4G this week.

The most important people in the open source ecosystem
are not the mythic hackers,
they are the people who have
access to resources.
They're people like many of you,
who can direct resources,
or who advise those who can.

I have a problem to solve

Let’s do this open!

These are folks with problems to solve.
They make decisions about how to apply resources to the problem.

Here’s the software!

Good idea, boss!

open 
code

Those every-day decisions,
in big boring institutions,
are what lay the foundations for others.

Looks useful, can we help?

open 
code

Sure!

Who will make their own decisions.
If these people work in the open,
if they value software freedom, they can work together.
If they work together, they can eventually get more value out, than they
put in.

That's the open source economy in action.
So why do we code?
More precisely, we do we code open source?

Because there are multiple economies in which it makes sense.

attention The software attention economy,
gathering development effort around the winning software,
winnowing out the losers and the also-rans

attentiongift The developer gift economy,
rewarding altruism and community mindedness
with social capital and influence

attentiongiftcash The cash economy,
where the value derived from open source is worth billions,

and even the (relatively) tiny amount
that flows back is circulating and continuing to
provide developer effort for the software

makes
sense

baby  
goats

right  
thing

“why we code” We code open source because
 it makes sense, ethically and financially.
<x> We code open source because
 we like the baby goats.
<x> We code open source because
 it's the right thing to do.

Thank
you
very
much,
have a great conference.

