
be not afraid...
a manager’s guide to

open source

I'd like to start ...
with a digression.

One of my favourite pieces of poetry was delivered,
not by a beat poet in Greenwich Village or by a 19th
Century Romantic,

but by one Donald Rumsfeld, then Secretary of
Defense, from the Pentagon press briefing room, on
February 12, 2002.

;.

I I \\ I '" II I \ I' I [\ ~1 I II I I \ 1 I' I 1\ 1 '" 1 1\ I " 1 '" I, \ \ "

GET RICH OR GET OUT
Attempted Robbery with a Loaded Federal Budget

By Thomas Frank
----------- + -----------

THE LAST AMERICANS
Environmental Collapse and the End of Civilization

. By Jared Diamond

THE MAN WHO KNEW TOO MUCH
Stephen Jay Gould's Opus Posthumous

By David Quammen

$S.9SUS S6.9SCAN

GRACE
A story by Paula Fox

Also: James Agee and Paul West
-------+ -----------

Hart Seeley later formed the Secretary's words into a
poem which was published in Harper's Magazine in
June 2003 as "The Unknown"

As we know,
There are known knowns.
There are things we know we know.
We also know
There are known unknowns.
That is to say
We know there are some things
We do not know.
But there are also unknown unknowns,
The ones we don’t know
We don’t know.

S#!*
I don’t know
I don’t know

S#!* I don’t knowS#!* I know

S#
!* I sh

o
u
ld know

I've also found the same sentiments expressed less
elegantly, but more forcefully in diagram form,
showing: The stuff we know we know; The stuff we
know we don't know; And the vast expanse of things
we don't know we don't know.

It is scary that the largest category by far is one we
definitionally cannot comprehend stuff we don't
know we don't know.

S#!* I don’t knowS#!* I know

S#
!* I sh

o
u
ld know

 about

open source softw
are

S#!*
I don’t know
I don’t know

Of course, this is an epistemological diagram of *all*
knowledge, so we *can* constrain it, a bit, by noting
that, for practical purposes, we are really only
concerned with the stuff we *should* know.
Unfortunately the stuff we
should know still falls in all three categories.

And as IT managers, there is, amongst the stuff we
should know, the stuff we should know about open
source software

developer manager

So, why do I think I have something useful to say on
this topic? My bona fides to talk about open source
and management are as a developer of open source
software, a hacker, a programmer, in particular on
the PostGIS spatial database, which I have been
involved in for 10 years and as a manager of a small
consulting company, Refractions Research, which I
ran for 10 years.

S#!* I don’t knowS#!* I know

S#!* I should know about
open source software

S#!*
I don’t know
I don’t know

My goal today is to modify your internal
epistemological diagrams a little, maybe to
something more like this.

open source is an
option

And not because I expect you all to rush back home
and implement open source, but because when you
know more about open source, it becomes an
OPTION.

who
what
where
when
why
how

To understand why open source is an option, it helps
to have some background. So I am going to begin
with a quick rundown the journalistic who, what
where when and why.

who
what
where
when
why
how

And fortunately, I can squeeze the Who, What, Where
and When into a preliminary story, and then we can
deal with Why and How at our leisure afterwards.

once upon a time...

So, the story...

Once upon a time, there was a young man with wild
ideas about freedom, who took on the established
order of things, appeared to lose, but in the end
changed the world forever (though perhaps in ways
he might not approve of).

Actually, not that young man, though there is a
striking resemblance...

In 1980, Richard Stallman was a programmer

MIT artificial intelligence lab
~1980

at the MIT Artificial Intelligence lab. Some of the best
minds in the

the best minds in AI

AI field worked together

sharing ideas and code

and shared ideas and implementations of those ideas
in code.

golden age
of hacker collaboration

It was, to hear Stallman tell it, a brief golden age of
collaboration and intellectual ferment.

Then one day, and don't all horror stories start this
way, one day, the lab got a new printer (a xerox
9700). Unlike the printer it was replacing, the new
printer came with a binary-only printer driver; the
source code was not included.

printer has jammed

Stallman had modified the previous driver to send a
message to users when the printer jammed.

why not just share
the code?

With the new binary driver he couldn't do that. The
situation was *inconvenient*, it was a pain. Why
couldn't Xerox just share their code? Everyone would
be happier!

things were changing...

Most people might have shrugged. But for Stallman it
was a galvanizing moment. Over the past five years
working in the AI lab, he had grown used to sharing
code and ideas with other programmers.

But now the atmosphere in computing was changing.

symbolics.com
registered in 1985

It wasn't just the printer driver.

A private corporation had started recruiting his
colleagues in the lab. Once hired, they were no
longer allowed to exchange code with him.
(Completely unrelated nerd trivia, but, the company
doing the hiring, symbolics, was also the first
company to register a .com domain name, in 1985.)

The old hardware in the lab, and by extension the
software that ran on it, was becoming obsolete. The
new systems being purchased by the lab included
operating systems that were locked down: you had to
sign nondisclosures just to use them.

“the first step
in using a computer

was to promise
not to help

your neighbor”

It was the death of the old collaborative community.
Stallman worried that "the first step in using a
computer was to promise *not* to help your
neighbour" by accepting a license agreement.

“was there
a program or programs

that I could write,
so as to make

a community possible
once again?”

As a highly talented and idealistic computer
programmer, Stallman wanted his work to serve a
larger purpose. The financial promise of working in
the growing proprietary software industry was not
enough, nor was the sterile intellectual amusement
of continuing his work alone in academia.

Facing the death of his old intellectual community,
Stallman asked himself "was there a program or
programs that I could write, so as to make a
community possible once again?"

operating system

portable / multi-platform

UNIX compatible

free

You can't use a computer without an operating
system. So Stallman decided that he
needed to write an operating system. It had to be
portable to many computer platforms, it should be
compatible with the popular new UNIX operating
system to make it easy for people to run their
existing programs on it, and most importantly it
should be **free**.

free

to run it
to modify it
to share it
to share your modifications

By "free", Stallman meant
you should be free to run it,
you should be free to modify it,
you should be free to share it,
you should be free to share your modifications

“free” as in
“freedom”

il software libero
software libre
logiciel libre

liberty

That is, you should have freedom, in how you use
your software.

In a latinate language like French, Spanish or Italian
it's more obvious, Stallman isn't talking about
logiciel gratuis, he's talking about [fr] logiciel libre,
[sp] software libre, [it] il software libero.

He's talking about liberated software: the key
addition is liberty.

open source definition

These core freedoms, to modify and share software,
also make up the "open source definition", which was
popularized in 2000 at the end of the dotcom boom.

G
N
U

NU’s
ot
NIX

So, rather than join a computing industry that he
considered morally bankrupt, Stallman decided to
basically start a new one from scratch. It was an
audacious plan.

Stallman called his new system GNU, which stands
(recursively) for "GNU's Not UNIX?" (See the
recursion?)

 ’s
Not
UNIX

GNU’s
Not
UNIX

 ’s
Not
UNIX

 ’s
Not
UNIX

GNU’s
Not
UNIX

Let me just take a very minor diversion here to add
some extra flavor.

copyleft

“all rights reversed”

In order to ensure GNU remained free, and did not
get subsumed into a proprietary system in the future,
Stallman released his work using a scheme he called
"copyleft".

public
domain

all rights reserved

©
no rights retained

Generally speaking, intellectual works (books,
movies, songs, computer programs) are either under
copyright or public domain. The author either retains
full control over the work, "all rights are reserved", or
no control, "no rights are retained".

all rights reserved

no rights retained

so
m

e
 rights reserved

© public
domain

© + licensing

Copyleft, and open source licenses in general, use
the copyright system to selectively grant permission
and exert control over software through *licensing*.

The copyleft license grants permission to all
recipients of the code to use, modify and redistribute
the work in any way they wish,

 GNU GENERAL PUBLIC LICENSE
 Version 2, June 1991

 Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

 Preamble

 The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Lesser General Public License instead.) You can apply it to
your programs, too.

 When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

 To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

 For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

with one exception.

The license requires that any redistribution of the
work or derived products include the source code,
and be subject to the same license.

to share and change freeto guarantee your freedom
software

The legal language can get complex, but the
principle is hardly foreign. Share and share alike. Do
unto others as you would have them do unto you. Or
else.

OK, back on the highway.

So, in 1984 Stallman quits his job at MIT and starts
working on GNU full time. No visible means of
support, this is a labor of love.

But where to start? From a blank canvas, you want a
completely free software ecosystem, what do you do
first?

If you wanted to build a 100% all hand crafted house,
you would start by hand crafting your tools. Stallman
did the *same* thing, with GNU versions of software
development tools.

He starts by writing a text editor (GNU Emacs), so he
can write his free system using free tools.

The Emacs editor proves so popular (and internet
access is still so rare) that he is able to earn a small
living selling tape copies of the code (distributed
under copyleft of course).

Then he writes a compiler, GCC, so he can build the
code into executables. You can still find GCC in every
Linux and also in Mac OSX.

Stallman lives like a monk, works like a demon,
attracts some followers and helpers,
who formalize the project in a foundation.

By 1990 they have most of the components of an
operating system.

shell

debugger
compiler

editorlibraries

etc...!

hardware
Most importantly, they have a full programming tool-
chain: shells, compilers, debuggers, editors, core
libraries, and so on. All the things you need to write
complex software.

hardware

shell

debugger
compiler

editorlibraries

etc...!

proprietary kernel

What they don't have, is a UNIX kernel, the piece of
software that talks directly to the hardware.

At this point, all their free tools are still being run on
proprietary UNIX!

linus torvalds intel 386

In 1991, a Finnish computer science student named
Linus Torvalds buys a new computer, an Intel 386.

As a student at the university, he has access to UNIX
systems, and he wants to run UNIX on his 386 at
home.

GNU

This is not possible.

The good implementations for the 386 cost more
than the computer itself. The cheap implementation,
Minix, is quite limited.

So Linus writes his own kernel. He uses Stallman's
GNU tools to write and compile it. And in August of
1991 he posts the following
on an internet discussion list.

Hello everybody out there using minix -

I'm doing a (free) operating system
(just a hobby, won't be big and
professional like gnu) for 386(486)
AT clones. This has been brewing
since april, and is starting to get ready.
I'd like any feedback on things people
like/dislike in minix, as my OS resembles
it somewhat (same physical layout of the
file-system (due to practical reasons)
among other things).

I've currently ported bash(1.08) and
gcc(1.40), and things seem to work.
This implies that I'll get something
practical within a few months, and
I'd like to know what features most
people would want. Any suggestions
are welcome, but I won't promise
I'll implement them :-)

Linus (torvalds@kruuna.helsinki.fi)

does anyone want to play?

Underneath the technical language, note the
subtextual bits: the humility (just a hobby...); the
interest in other people's ideas (what do you like/
dislike in minix...).
The posting is an invitation.

Does anyone else want to come out and play? Does
anyone? They do.

“Tell us more!
Does it need a MMU?

How much of it is in C?”

Within 15 minutes, he has a reply. "Tell us more!
Does it need a MMU? (memory management unit)
How much of it is in C?"

Within 24 hours, he has replies from Finland, Austria,
Maryland, and England.

In a month the code is on a public FTP server. Within
four months, it is so popular that an FAQ document
has been written to handle the common questions.

Linus Torvalds tapped a seam of enthusiasm just
dying to express itself.

diff
patch
e-mail
FTP

geeks

People who loved computers and computing and just
wanted to play together. And through the medium of
the internet, using only the simplest computing tools
(diff, patch, ftp, e-mail), he built a community of
thousands of contributors, and

together they built a usable operating system.

0

5000000

10000000

15000000

20000000

Aug 1, 1981 Dec 1, 1987 Jan 1, 1991 Jan 1, 1993 Jan 1, 1995

of internet hosts

Something important changed between the time
Stallman started the GNU project and Torvalds
released Linux. The values of collaboration were the
same, but the opportunity to exercise those values
was greater, via the internet.

When Stallman started GNU in 1984, there were 1000
hosts on the internet. When Torvalds started Linux in
1991, there were over 400,000. The pool of potential
collaborators was in the middle of a huge expansion.

Let's take a quick detour and talk about Star Wars.

starwarsuncut.com

In particular, let's look at a web site called Star Wars
uncut.

Star Wars Uncut has taken the original movie and
chopped it into 473 fifteen second scenes. Each
scene is then separately claimed and re-enacted by
site members, and uploaded.

The result looks like this.

frivolous

but why now?

Seems pretty frivolous, right, but break it down. How
is this (frivolous) collaboration possible? And, why is
it only happening now, not 10 years ago? There were
just as many Star Wars nerds 10 years ago as there
are now.

cheapgeeks

First, this activity requires easy access to video
recording and editing tools, and until recently
cameras and video editors were very expensive. And
it requires enough bandwidth to download and
upload video, and until recently people didn't have
that kind of bandwidth in their homes. And finally it
requires Star Wars geeks.

Generalizing, then… To build a large collaborative
product, you need tools freely (or very cheaply)
available and you need sufficient connectivity
between participants. Combine that basic
infrastructure, with community, collaboration and
love for the subject matter, and magic happens.

commons-based
peer production

There are many, many more examples of this kind of
group collaboration, the academics call it "commons-
based peer production". If you are interested in the
topic

I strongly suggest reading “Cognitive Surplus” or
“Here Comes Everybody” by Clay Shirky.

So this is less of a detour than it seemed at the start,

open source is
commons-based
peer production

Because, Open source software in general and the
Linux project in particular are some of the earliest
examples of internet-mediated commons-based
peer production.

GNU

The universal access to tools was provided by the
original GNU project components. Editor, compiler,
lexer, libraries, were all available equally to all
participants.

diff
patch

e-mail
FTP

The medium of communication was just e-mail. The
work they were sending around was source code,
snippets of text, no problem even for the dial-up
internet connections of the early 1990s.

geeks

And why do open source programmers do it? What is
the core motivation. It isn't money. Fundamentally
they code because they love it.

scifi
geeks

food
geeks

car
geeks

It's the same reason: Star Wars geeks re-shoot 35
year old films; why food geeks post restaurant
reviews; why car geeks re-build '68 Cameros. It's an
avocation.

At least, it starts that way. But open source software
has a wider utility than restaurant reviews and
vintage muscle cars. So as projects have expanded,
they have at each stage become more and more
integrated into the wider economy.

1991

individuals
spare time
hobbyists

distributors
package and
sell CDROMS

1992

1994

DEC gets
Alpha port,
Sun gets

Sparc port

Red Hat
Linux

formed

1995

1996

Los Alamos
builds Linux

cluster

1998

Linux
rules

internet

Linux is a good example. Start with Linus and the early group of enthusiasts in 1991. These are individuals working in their spare time. They are doing it for love.

By 1992, you get "distributors", packaging up the Linux kernel with collections of GNU and other tools to form full working operating systems. First they do it for love,
helping other Linux lovers, but soon they are covering their cost and time, selling CDROMs for $50. So programmers are earning livings with small Linux businesses
within a couple years of the project start.

And then the corporate world starts to see the value in a new, free operating system.

In 1994, DEC sends Linus a "free" Alpha workstation in the hopes he will port Linux to the Alpha chip. He does. Simultaneously David Miller ports Linux to the Sun Sparc
processor. Linux is now competing with "real" UNIX on corporate "big iron". Over the next couples years, the makers of these machines start to hire Linux programmers
of their own.

So three years in, major corporations are seeing the competitive advantage in Linux, and start hiring experts in it.

In 1995, Red Hat Linux is formed, a company which will eventually grow to an
$8B Linux support enterprise.

In 1996, Los Alamos National Laboratory builds the first Linux cluster for simulating
atomic shock waves. It costs 10% of a comparable supercomputer, and on start-up becomes the 315th most powerful supercomputer in the world.

By 1998, the explosion of the internet into general public use is underpinned by thousands of commodity servers running Linux as their operating system.

Microsoft is drafting strategy memos about how to
counter Linux, and Linus Torvalds is featured on the
front page of Forbes magazine.

Linux is no longer a hobbyist activity. It is deeply
embedded in the economy at multiple levels. This is
in 1998, just *seven years* after that first newsgroup
post.

etc!...

Fast forward to the present. The NSA employs Linux
programmers to make their systems secure. NASA
employs Linux programmers to run it on their space
mission hardware. Google employs Linux
programmers to optimize their massive compute
clusters. Oracle employs Linux programmers to
support their Oracle-optimized Linux. IBM employs
Linux programers to ensure it runs on their SystemZ
mainframes. Microsoft employs Linux programmers
to add kernel support for Windows virtualization. And
so on, and so on, and so on,

“how do you make a living
writing free software?”

So, here's a question I get asked a lot: um, how do
you make a living writing free software?

etc!...

Referring back to the previous slide...
Hopefully it would be obvious.

I make my living the same way my dentist, barber
and plumber make their livings. I sell my very
specialized expert services to people who need them.
And in a globalized, internet connected world, there
are plenty of people who need them.

open source is an
option

I could talk for another half hour about the different
ways open source projects are deriving support from
the general economy, but unfortunately, then, I
wouldn't have time to talk about why you, as
managers, should be looking at open source as an
option.

why

who
what
where
when

how

We have covered the Who (Richard Stallman, Linus
Torvalds and thousands of others) What (Freedom to
redistribute and modify) Where (Mostly on the
internet) and When (From 1985 initially, but really
starting from the early 1990s, growing rapidly right
up to the present) of open source.

cl
ou

d
re

ad
in

es
s

lic
en

se
 li

ab
ili

ti
es

flexibility

staff developm
ent

market power

Now let's take a look at the "Why". And not the "why"
of Stallman (the moral imperative to share), but the
"why" of an information technology manager.

Here are five good reasons to consider open source
in your enterprise

Cloud Readiness also known as Scaling also known as
Rapid Deployment; License Liability or actually the
Lack Of same; Flexibility and its kissing cousin
Heterogeneity; Staff Development and Recruitment;
and most importantly Market Power.

#0: technical
superiority

So, first of all
Technical Superiority

Did I forget to mention this one?

• fewer bugs
• more modularity
• better security
• faster release cycles
• better performance

There are open source advocates who will claim,
straight up, no hedging, that open source software is
just technically superior to proprietary software. They
will say that the open development model results in
code with fewer bugs per 1000 lines, higher levels of
modularity, better security due to wider peer review
and faster release cycles, and better performance.

not me

I am not one of those advocates.

more developers and testers
than any one company

could possibly field

At least not for most projects. For a project like
Linux, perhaps. Linux has concentrated an incredibly
large number of very high quality technical
contributors
into one code base, more people than any one
company could ever employ.

But most open source projects, and certainly those in
the geospatial realm, operate with at most a few
dozen contributors, they aren't out of the league of
corporate development teams.

Spatial

(Although I'm pretty sure there are more people
working on PostGIS right now than are working on
SQL Server Spatial.

weird

Which is weird.)

David
Wheeler

dwheeler.com/
oss_fs_why.html

If you are interested in the topic of technical
superiority, David Wheeler has a 2007 paper "Why
Open Source Software: Look at the Numbers!" that
brings together all the research in one, very, very
long page, which is well worth reading.

#1: cloud readiness
scaling
rapid deployment

Moving on, Reason #1, cloud readiness, also known
as scaling, also known as rapid deployment. It looks
like I'm squeezing three topics into one, but I'm not.
These three benefits are all aspects of the same open
source attribute:

$0 capital cost

the zero-dollar capital cost of deployment.

peter batty says...

it’s getting cloudy
Last year, your keynote speaker was Peter Batty, and
he warned you of the technical trends ahead. More
and more computing tasks will be delegated "clouds"
of computers hosted in huge data centers
"somewhere" on the internet. More users will expect
direct access to data through web services.

your
server

More mobile devices will consume those services
with every passing year. All that new user demand
adds up to potentially unconstrained load on
services, and growth curves that transition very
quickly from horizontal to vertical, as services move
into the mainstream.

start-
ups

open
source

One of the things I have noticed about users of
geospatial open source over the past years, is that
the most enthusiastic adopters have been start-up
companies.

GlobeXplorer based their satellite image service on
the PostGIS open source database, choosing it over
Oracle and Informix.

Zonar Systems developed a fleet tracking system on
top of PostGIS and the MapServer web mapping
software.

RedFin started their real estate information site on
MySQL and moved it to PostGIS for performance
reasons.

analytics

The Google Analytics for the PostGIS site show that
California is the state with highest interest and

analytics

inside California it is San Francisco and Silicon Valley
that have the highest interest.

start-ups cannot
afford artificial

limits on growth

The reason start-ups love open source is because it
removes a category of potential constraints on their
growth. The cost of computing hardware falls
dramatically year over year. The cost of proprietary
software does not follow the same curve.

$N per core
 X cores
ouch!

If you are using software licensed per CPU or core,
that means that software cost is a
primary driver of scaling cost.

Dell T710

2x quad-core Xeon
36 GB RAM
2 TB RAID 10

$6,953

The math can be brutal even before you start scaling
horizontally.

This Dell T710 with dual quad-core CPUs, 36Gb of
memory and 2TB of RAID 10 storage will set you
back $6,953.

8 cores
0.5 “processor core factor”

$47,500 Oracle Enterprise
$17,500 Oracle Spatial

$260,000

OK, now let's put Oracle Enterprise on our fancy new
server.

We have 8 cores, multiply that by a 0.5 "processor
core factor", times the per processor price of Oracle
Enterprise, add in Spatial because we are GIS folks
(and remember, you need Enterprise to run Spatial)
and the grand total is, a cool $260,000.

Or as Larry Ellison calls it, a quarter.

$6,953
$260,000

Just contemplate the numbers for moment. Hmm.

The exact same unpleasant math applies to GIS map
serving, and it gets worse and worse the more you
scale up.

proprietary open source

server $5,000 $5,000

software $30,000 $0

training $0 $30,000

total $35,000 $35,000

Let's compare scaling an open source and a
proprietary map service.

At initial roll-out, the load is small, so we buy one
server for $5,000, and one copy of the software for
$30,000. To be fair (or perhaps unfair) let's assume
the staff is already fully trained in the proprietary
software, but requires an immense amount of
expensive training or learning time to adopt the open
source. So there's our sub-total for the first server,
$35,000.

proprietary open source

server $5,000 $5,000

software $30,000 $0

training $0 $30,000

3x server $15,000 $15,000

3x software $90,000 $0

training $0 $0

total $140,000 $50,000

Now great news, the citizens love the map service,
maybe someone built a cool iPhone app around it,
and suddenly the load on the machine quadruples.
What does it cost? Add three more servers. Add three
more licenses. We don't need more training, the
software is the same. And he more you scale, the
worse the totals on the left become.

I run my
servers in the

cloud.

Now, it is possible you are already so highly evolved
that you run your public services in the cloud. So
there are no capital costs for "servers". But the math
in the cloud remains just as unpleasant:

$N / instance ∗ X instances

ouch!
per-instance proprietary software licensing dwarfs
the per-instance hardware cost. The only difference
is that the hardware costs are spread out more evenly
over time instead of being concentrated in big
capital-intensive bursts.

G
o! G

o!
G

o! G
o!

Identify need for more servers

Deploy more servers

#1

Request additional licenses

Wait.... wait.... wait....

#2

#3

#4

The final reason start-ups love open source is that
they don't have to ask permission to fire up those
new servers, so they can respond to crises and new
opportunities very very quickly. Any software that
requires a license or a license manager can
potentially slow a deployment by days. If you are
suddenly enjoying a surge in traffic, the last thing
you want to offer your new customers is a slow
customer experience because you haven't been able
to deploy enough servers.

#2: license liability
(lack of)

So, I used to run a consulting company, and at our
peak we had 30 staff. A small company.

30 30

But that still meant 30 workstations under 30 desks,
running 30 licensed copies of Windows and 30
licensed copies of Microsoft Office.

At least, that was the theory.

In practice the company had grown very quickly over
two years and software, particular application
software, had been installed wherever it was needed
whenever it was needed. So when we finally got
around to counting up the difference
between what we were using and what we owned, it
was a bit shocking.

10 5

 We had 10 licenses for Windows and 5 for Office.

Coming into compliance would cost almost $20,000.
Not coming into compliance would risk hundreds of
thousands of dollars in fines.

We were one disgruntled employee away from a big
cash crunch.

• Developers used Java
development tools

• BAs used word processing
and spreadsheets

• Everyone used e-mail and
web browsing

So we examined what we wanted our software to do.
Our developers needed Java development
environments, our BAs needed document processing,
our managers needed some word processing,
everyone needed e-mail.

• Developers used Java
development tools

• BAs used word processing
and spreadsheets

• Everyone used e-mail and
web browsing

So we switched to open source. Everyone got OpenOffice for word processing. E-
mail and web browsing was with Firefox and Thunderbird. Some developers
switched to Linux as their operating system. And we bought enough extra Windows
licenses to fill the desktop operating system gap.

It was all surprisingly easy. Two things to keep in mind

First, if we had been more disciplined about using open source in the first place,
we wouldn't have built up the liability problem we did. On the server side we had
always been a pure Linux and open source shop, so we never built up a problem.

Second, once we *got* the open source discipline, our potential *future* liability
problems were reduced. There were just a *lot fewer licenses* remaining to keep
track of.

ok, smart guy,
what about GIS software?

 So we replaced our office automation side without
much trouble, what about the GIS side?

;

Some tools were too specialized and ingrained in our
workflow to be replaced. We simply worked to
manage our license load. We put our FME licenses on
a shared system with remote desktop, for example.

Other things had just gotten out of hand...

 ArcView 3 is just so darned easy to copy. Isn't it?

How many of you have copies of ArcView 3 floating
around your offices or... sssshhh, your homes?

If I listen very carefully, I can hear a license
compliance managers teeth grinding somewhere in
the back.

 Our story ended with removing all the unlicensed
ArcView copies, since they weren't being used, and
with those who needed a viewer/editor using the
JUMP project.

That was several years ago. If it were happening
today, we might use gvSIG or uDig, but probably the
most complete ArcView replacement available right
now is QGIS.

I've started to see a growing number of requests for
proposals that specify QGIS in what would formerly
have been the ArcView 3 role: a data entry platform
with some custom tools in a field situation.

Here's a few screenshots of QGIS, it looks eerily
familiar doesn't it? Simple UI, basic scripting
language, simple printing capability. It fills a need.

It fills a need.

proprietary software licenses
are a legal liability

that must be managed

But the core point here is *not* that proprietary
software is replaceable (though it is), it is that
proprietary software adds a layer of legal liability that
needs to be managed. And that takes time and effort.

Because software gets copied. A lot.

ctrl-C

ctrl-V

ctrl-C
ctrl-V

ctrl-C

ctrl-V
ctrl-C

ctrl-V ct
rl-

C
ct

rl-
V

ctrl
-C

ctrl
-V

ctrl
-C

ctrl
-V

ctrl
-C

ctrl
-V

ctrl
-C

ctrl
-V

ctrl-C

ctrl-V

ctrl-Cctrl-V
ctr

l-C ctr
l-V ctrl-Cctrl-V

ctrl-C

ctrl-V

ctrl-C

ctrl-V

ct
rl
-C

ct
rl
-V

ct
rl
-C

ct
rl
-V

ct
rl
-C

ct
rl
-V ctrl-C

ctrl-V

ctrl-C
ctrl-V

ctrl-C

ctrl-V

ctrl-C
ctrl-V

ctrl-C

ctrl-V
ctrl-C

ctrl-V ct
rl-

C
ct

rl-
V

ctrl
-C

ctrl
-V

ctrl
-C

ctrl
-V

ctrl
-C

ctrl
-V

ctrl
-C

ctrl
-V

ctrl-C

ctrl-V

ctrl-Cctrl-V
ctr

l-C ctr
l-V ctrl-Cctrl-V

ctrl-C

ctrl-V

ctrl-C

ctrl-V

ct
rl
-C

ct
rl
-V

ct
rl
-C

ct
rl
-V

ct
rl
-C

ct
rl
-V ctrl-C

ctrl-V

ctrl-C
ctrl-V

ctrl-C

ctrl-V

ctrl-C
ctrl-V

ctrl-C

ctrl-V
ctrl-C

ctrl-V ct
rl-

C
ct

rl-
V

ctrl
-C

ctrl
-V

ctrl
-C

ctrl
-V

ctrl
-C

ctrl
-V

ctrl
-C

ctrl
-V

ctrl-C

ctrl-V

ctrl-Cctrl-V

ctr
l-C ctr

l-V ctrl-Cctrl-V

ctrl-C

ctrl-V

ctrl-C

ctrl-V

ct
rl
-C

ct
rl
-V

ct
rl
-C

ct
rl
-V

ct
rl
-C

ct
rl
-V ctrl-C

ctrl-V

ctrl-C
ctrl-V

ctrl-C

ctrl-V

ctrl-C
ctrl-V

ctrl-C

ctrl-V
ctrl-C

ctrl-V ct
rl-

C
ct

rl-
V

ctrl
-C

ctrl
-V

ctrl
-C

ctrl
-V

ctrl
-C

ctrl
-V

ctrl
-C

ctrl
-V

ctrl-C

ctrl-V

ctrl-Cctrl-V

ctr
l-C ctr

l-V ctrl-Cctrl-V

ctrl-C

ctrl-V

ctrl-C

ctrl-V

ct
rl
-C

ct
rl
-V

ct
rl
-C

ct
rl
-V

ct
rl
-C

ct
rl
-V ctrl-C

ctrl-V

 Why wouldn't it, you make a perfect copy with two
keystrokes, it gets copied. Ctrl-C. Ctrl-V.

And if that software is proprietary, each of those
keystrokes digs a compliance hole for the
organization. Click, click, click, deeper and deeper
and deeper. And you don't realize how deep that hole
is, until you fall into it.

#3: flexibility
heterogeneity

This is a bit of a geeky argument, but bear with me

• “flexibility” is an
attribute of components
• flexible components are

easy to connect and adapt

 First, flexible components are easy to connect to
each other and to adapt. You can use flexible
components from multiple vendors to build a
heterogeneous system.

• “heterogeneity” is an
attribute of the system
• heterogeneous systems

use parts from many
sources

 A heterogeneous system incorporates components
from multiple sources.

Flexibility is great, but usually you have to trade
some ease-of-use to get get it.

or ?

Which toolbox would you rather work with? The hex-
tool: convenient, easy, fits in the palm of your hand,
three sizes. Or The socket set: modular, extendable,
64 sizes, metric and imperial.

One's easy, one's flexible.

internal services external wms

corporate
 data w

arehouse

ArcSDE

Here is a practical example of the value of flexibility and heterogeneity.

The British Columbia government built their web mapping infrastructure
using ArcIMS for their internal web servers and web applications, and using
MapServer for their external WMS services.

Both web mapping servers pull their data from a central ArcSDE instance. So
they have a flexible tool (in MapServer) and a heterogeneous infrastructure
(using both ArcIMS and MapServer).

A few years ago, the infrastructure team applied a minor, minor, teeny
weeeny, sliver of a service patch to the Oracle database that hosted ArcSDE.
To their surprise, the minor patch shut locked up SDE. Which meant their
web services (that depended on SDE) were also down.

internal services external wms

corporate
 data w

arehouse

tem
porary

 data w
arehouse

The WMS services were brought back up in three
days, after a long process of loading the raw data
into a temporary PostGIS database. Because
MapServer could read from PostGIS just as easily as
ArcSDE, this was no problem.

corporate warehouse
offline for 28 days

The ArcIMS services remained offline for the duration
of the outage, which was 28 long days until a patch
to ArcSDE was made available.

Database

GIS Server

Web Framework

Data Management
Tool

As a general proposition, proprietary product lines
talk well to other systems from the same vendor, and
less well to systems from other vendors. Competitive
advantage dictates this arrangement, but, it puts the
interests of the customer in interoperability below
the interests of the vendor in promoting lock-in.

ArcSDE

As a general proposition, open source products talk
well to all other systems.

The reason why is less obvious, but it has to do with
the practical motivations of the developers.

open source is a tool
that needs to be made useful

within the context
of existing systems

 Once a project moves past the "for fun" stage, the
developers are working on it because it is a
workplace tool, they need it to "do something". And
the "something" they need it to do, is usually in the
context of other software.

internal services external wms

corporate
 data w

arehouse

ArcSDE

So, as a developer, if you like MapServer's GML
support, but you work in an environment where
most of the data resides in ArcSDE, a reasonable
thing to do is write code to connect the two.

ArcSDE

Each of these practical interconnections increases
the overall value of the project, bringing in more
developers in, who bring in their own unique
interconnection requirements.

Shape

GML

KML

Ingres

Geodatabase ArcSDE

DGN

Oracle

Informix

MySQLArcCoverage

SDTS

SQLServer

GRASS

PostGIS

ArcGrid

TIFF

ECW

LAN IMG

JPG2000

DEM
NetCDF

PNG

GRASS

MrSID

SDE Raster SPOT
DoQ

HDF

SQLite

An example of the end state of this process is the Minnesota MapServer supported format list, which is one
of the most extensive in the industry. MapServer started out in 2000 with just one format: shape files.

Short digression This is the boreal forest around Prince George, British
Columbia, where I grew up. In the mature forest, out
of the creek valleys, over 80% of the trees are pine
and spruce.

In the late 1990s an infestation of the mountain pine
beetle

began in Wells Grey Park in north western British
Columbia.

 The local infestation turned into an epidemic over
the next few years.

The epidemic has been "uncontrolled" for a decade
now and is only forecast to abate by the middle of
this decade,

when the population of mature lodgepole pine has
been completely digested.

 Here's a graph of the number of hectares affected
over time. The pine beetle has been so ..."successful"
for lack of a better word, not just because climate
change has reduced the number of cold winters that
kill beetle populations, but also because of the good
luck in finding a huge homogeneous area of mature
boreal forest ready to consume, the product of 50
years of successful forest fire fighting.

 Just a little digression on the digression...

computer worms

 Computer worms are pieces of code that self
replicate, kind of like beetles. They start from a host,
scan for other vulnerable hosts, then copy their
children to the new host, where the process
continues.

 This is the infection timeline for the Code Red worm,
which in 2001 spread through a vulnerability in the
Microsoft IIS web server. Familiar, yes?

GET /default.ida?
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNu9090%u6858%ucbd3%u78
01%u9090%u6858%ucbd3%u7801%u9090%u6
858%ucbd3%u7801%u9090%u9090%u8190%u
00c3%u0003%u8b00%u531b%u53f
%u0078%u0000%u00=a HTTP/1.0

 If you're a network administrator, you might
recognize this log entry, the signature of an
attempted Code Red infection: You can actually still
see them in logs from time to time, very rarely now,
like marooned Japanese soldiers who don't know the
war is over.

 OK, let's get back on the road.

homogeneous systems
and single-vendor strategies

can be convenient

 Homogenous systems, and single-vendor strategies,
are usually convenient. But there is a trade-off.

but,
lack flexibility

for fast adaptation

 They lack flexibility, which can make it hard to adapt
them to unexpected purposes.

and,
homogeneous systems
can be susceptible to

“population catastrophes”

 And, they present reliability risk, an increased
vulnerability to population catastrophes, issues that
are capable of shutting down your whole
infrastructure in one go.

#4: staff development
and recruiting

One of the most gratifying things I have heard over
my career of teaching about open source GIS
software is this:

“that talk you gave last year
totally changed my life”

 "that talk you gave last year totally changed my life".

i’m not kidding

 Saying this about a software talk.

“that talk you gave last year
totally changed my life”

 It is a totally absurd thing to hear about a software
talk. And yet, I have actually been told this _several
times_. The people saying it are technology staff in
GIS departments, and the reason they say it is
because adopting open source gave them a whole
new toolbox to solve problems.

learning new things
making new things
without constraint

is really cool

some people think

hire these people!

 The exhilaration of learning what was in that box,
and the freedom to use that knowledge to make cool
things, without external constraints (like licenses) on
what they could make, was deeply empowering for
them.

These are very special people, they are the kind of
people you want to hire.

social
ineptitude

intelligence

obsession

dorks

gee
ks

dweebs
nerds

I recently came across a diagram which explains it all
in one page.

 Take the personality traits of intelligence,
obsession, and social ineptitude.

People with intelligence and obsession are geeks.
Inept smart ones are dweebs, and the inept
obsessives are dorks. Those with all three traits, in
the middle, are the nerds.

geo-geek
hire these!!!!

As GIS managers, building out new systems and
pushing the envelope, you probably want smart
folks with a mapping technology obsession, geo-
geeks ideally, but you can settle for geo-nerds.

So, how do you get those geeks and nerds to work
for you? Offer something *interesting*. Remember,
they are technology obsessives.

Paul
Graham

 Paul Graham is a Silicon valley entrepreneur and a
major league nerd, who tells this story about building
an e-commerce engine he eventually sold to Yahoo!
in the late 1990s.

core engine
 was written in LISP

 For personal technical reasons, they wrote their
engine in LISP, which was a rare choice, since most
mainstream use of LISP had disappeared by the late
1990s.

“I’m totally interested
in LISP...”

But, using LISP had an odd side-effect, which was
that when they advertised job openings, they got
these amazing resumes, rock-star candidates, and
when they interviewed them, they all mentioned
their interest in LISP.

uses LISP macros!

By the 1990s, LISP was really mostly used in
academic settings, but also retained a
prominent role as a customization language in... wait
for it... Emacs, Richard Stallman's text editor for
uber-programmers.

So the uber-nerd programmers who obsessed over
Emacs LISP macros were intrigued by the chance to
do web development in LISP.

for you,
maybe not LISP...

 OK, you're not going to build your web sites in LISP. I
am not recommending that.

but maybe...

 But you might build them in Python. Or Ruby. You
might run them on Linux. You might serve them with
MapServer or GeoServer. You might store your data in
PostGIS and PostgreSQL. You might build your web
pages with JavaScript and OpenLayers and GeoExt.

open source can help
with staff retention

no, really. it can.

 This does work in the real world.

“unobvious motivations
for adoption”

The city of Northglenn, Colorado wrote a report
about their experience with open source, and they
cited some of the motivations I've already talked
about, but in the section on "Unobvious Motivations
for Adoption" there is this quote:

“Contrast an open-source
implementation position
with a ‘defined skill set’

job...”

“...where the first diagnostic
action is to reboot the

server...”

“...and the second is to call
the vendor and wait in a
telephone hold queue...”

“It is easy to understand
why open-source jobs are

prized.”

City of Northglenn, CO

#5: market power

 Finally, Market Power.

I chose not to give a deeply technical talk today, so I
haven't really run through the panoply of open
source GIS software that is available to you. Let me
just quickly do that for effect.

databases

 For databases, you have PostGIS, MySQL, Ingres and
SpatiaLite.

gis servers

TinyOWS

and others...

 For map and feature servers, you have GeoServer,
MapServer, Mapnik, TinyOWS, SharpMap, and others.

tile cache

and others...

TileCache.org

 For tile caching you have TileCache, GeoWebCache,
TileStache, and others.

web interfaces

and others...

 For web interfaces, you have OpenLayers and
OpenScales, GeoExt, Polymaps and others.

desktop

and others...

 On the desktop you have gvSIG, uDig, QGIS,
OpenJUMP, MapWindow, and others.

libraries

and others...

JTS

 Underneath it all are libraries like GEOS, GDAL, OGR,
Proj4, JTS, and GeoTools, which can be leveraged
with scripting languages like Python, Perl, Ruby,
Groovy, ASP.Net and others.

sounds complex?

 Sounds complex, yes?

“open source offers too
many choices”

I give a talk, which started five years ago as a 20
minute talk and has now expanded into a 90 minute
marathon, where I cover all these options in detail,
and afterwards
exhausted people come up to me and say, "open
source offers too many choices",

“it’s easier with just one
vendor”

 "it's easier with just one vendor".

Which is odd, because we deal with lots of choice in
all the other markets we navigate every day.

 Theres lots of kinds of cars, lots of kinds of jeans,
lots of kinds of coffee.

 And we have a good idea of what a market with just
one vendor looks like. We actually have laws against
it.

proprietary licensing
creates de facto

monopolies

Proprietary software has a dirty little secret, and it is
a secret that lives in plain sight.

 Even in otherwise competitive markets, the effect of
proprietary licensing is to create an instant de facto
monopoly.

one
one
one

How many companies provide support for your
proprietary software: one.
How many companies provide upgrades: one.
How many companies provide enhancements: one.

for competing on support

 is suing

profit margin

on support: 800%

Proprietary companies guard their aftermarket
monopoly zealously.

 Oracle is currently suing SAP's TomorrowNow
division for the crime of selling Oracle support to SAP
customers.

And there's good reason Oracle is suing: the profit
margin on Oracle support is 800%.

do you have
market power?

It is all about market power. Open source vests the
market power in the software user, not the vendor.

As a manager, you probably don't care about
tinkering with the internals of your software source
code, but you SHOULD care about holding on to your
market power as a customer.

Bob Young
Founder
Red Hat Linux

 Bob Young, the founder of Red Hat Linux, asks this
question of customers:

“Would you buy a car
with its hood welded
shut?”

 Would you buy a car with its hood welded shut?

“No, right?”

 No, right? So ask the follow-up question:

“What do you know
about modern internal
combustion engines?”

 What do you know about modern internal-
combustion engines?

“Not much.”

And the answer for most of us is "not much".

“We demand the ability
to open the hood of our
cars because it gives us,
the consumer, control
over the product we
have bought, and takes it
away from the vendor.”

 We demand the ability to open the hood of our cars
because it gives us, the consumer, control over the
product we've bought and takes it away from the
vendor. We can take the car back to the dealer; if he
does a good job, doesn't overcharge us and adds the
features we need, we may keep taking it back to that
dealer. But if he overcharges us, won't fix the
problem we are having or refuses to install that
musical horn we always wanted -- well, there are
10,000 other car-repair companies that would be
happy to have our business.

this is not a good
negotiating position

Making an enterprise commitment to a single vendor
puts you permanently into the worst negotiating
position possible.

You go into every negotiation with no alternative
position, no other store to storm off to.

The only leverage you have left is the threat to buy
nothing at all. Which isn't much of a threat.

Speaking of market power, does anyone else see the
resemblance between these images?

 OK, I can't bring that segue back on topic. Not a
good detour perhaps.

cl
ou

d
re

ad
in

es
s

lic
en

se
 li

ab
ili

ti
es

flexibility

staff developm
ent

market power

 To maintain market power, to provide our staff with
new growth opportunities, to build heterogenous
systems, to lower license liability, to be ready to
scale, for all those reasons it makes sense to have
open source as an option.

HOW to start?

But how to start?

• 2007, 100% ESRI

• limited budget

• talented staff

• interest in new ideas

Way back in 2007, Pierce County, in Washington
State, was a 100% ESRI and Microsoft shop, with a
limited budget for new software acquisition.

It did have some talented technical staff, and a GIS
manager, Linda Gerull, who was interested in new
ideas.

“keep an eye out for
alternatives”

In the fall of that year, she learned that the
international open source GIS conference was being
held just to the north in Victoria, and took the
opportunity to send several of her staff.

"Keep an eye out for alternatives", she told them.

experiment,
but...

maintain service
continuity

When they came back, they had lots and lots of
alternatives, they were very excited.

But they couldn't just tear down their infrastructure
and start again, they had to maintain service
continuity.

how to replace
cutting edge technology
from the last century...

The team started experimenting by duplicating some
existing services that were built using old
MapObjects technology and slated to be replaced
anyways.

Some of them were very simple services with minimal
user interface, like the Critical Areas query form.

It just takes in a parcel number or address and
returns a simple report on environmental factors
based on a query of 18 layers.

MapObjects was unstable, ArcIMS was too slow, but
open source (PostGIS in this case) was just right.The
form didn't change at all, just the backend.

As their confidence in the tools grew, they looked at
migrating core bits of infrastructure.

old services data edits

ArcSDE

 Most recently, they replaced their SQL Server
database with PostgreSQL and PostGIS.

The key here is that they are continuing to run
ArcSDE on top. This allows them to use their existing
data management tools, like ArcGIS,

new services

geoquery services

old services

ArcSDE

data edits

 but use a pure open source web services stack
directly against PostGIS.

So the changes are incremental, and exploratory.

more options

fewer licenses

more budget room

Pierce County still runs ESRI software and ArcGIS
desktops, but the number of options they have for
deploying new systems is much higher, and the
number of licenses they require is going down, not
up. Budget flexibility is increasing.

At the same time, the staff has enjoyed learning the
new technology.

 This is the conclusion slide from a presentation
Pierce County's Jared Erickson,
gave at the Washington State GIS conference this
spring.

Open source and ESRI can work together. Open
source provides a diverse range of options.

FOSS4G 2011
Denver, Colorado
September 12-16

http://2011.foss4g.org

(For Pierce County an important catalyst was the
proximity of the FOSS4G conference in 2007, so I
would be remiss if I failed to note that the next
FOSS4G conference will be in Denver in September of
2011. It has not been in North America since 2007,
so take the opportunity to go or send staff. It won't
be back again until 2014.)

choosing
open source
components

 Pierce County experimented with a limited number
of open source components: PostGIS, PostgreSQL,
GeoServer, OpenLayers.

TinyOWS

TileCache.org

 But as we saw earlier, there are a lot of choices.

So how should you choose open source components?

David
Wheeler

dwheeler.com/
oss_fs_eval.html

 David Wheeler, who I mentioned previously in the
context of open source versus proprietary, also has a
very complete document on "How to Evaluate Open
Source Software"

like COTS
evaluation

but some differences

Much of the evaluation is the same as with
proprietary COTS (commercial off-the-shelf
software), but some key things are different.

this won’t happen

First, there will not be sales reps or sales material.

this will happen instead

You may have to download and test the software
yourself.

reality-based
understanding

marketing-based
understanding

Hopefully this will give you a reality-based
understanding of capabilities, rather than a
marketing-based understanding.

beware feature check-lists

open source may have fewer
features...

but adding features
is an option!

Second, you have to beware of feature check-list
comparisons. Open source often has fewer features
than proprietary software, but is also has a far faster
and cheaper pipeline for getting features added.

want a new feature in ?

(a) become

(b) chat up Larry

For example, if you want to get a feature added to
Oracle Spatial, you have to (a) become the
Department of Defence and (b) lean on Larry Ellison
while yachting.

want a new feature in ?

(a) give me $2K-10K

(b) wait 2-6 weeks

 If you want to get a feature added to PostGIS, you
just have to (a) give me $2-10K and (b) wait 2-6
weeks.

This feature is mission critical!

Oracle has it.

PostGIS does not.

It’ll cost $500,000 to deploy Oracle.

It’ll cost $50,000 to add feature to PostGIS.

Ergo, we should choose ___________

Adding a required feature to an open source project
should be an easy decision process, but it's just not
one we're used to.

 This feature is mission critical. Oracle has it. PostGIS
doesn't. It'll cost $500K to deploy Oracle. It'll cost
$50K to get this feature added to PostGIS. Ergo. We
should choose __________

this is your brain
on proprietary software

Amazingly, this decision is still not a slam dunk for
open source, probably because our brains just are
not quite used to thinking this way yet.

geeks

open source
Open source is the collision of geeky love of
computing with a political philosophy of freedom
with a global community enabled by the internet.

open source
is a practical option

for organizations

Open source provides organizations with a new
software OPTION when building systems.

cl
ou

d
re

ad
in

es
s

lic
en

se
 li

ab
ili

ti
es

flexibility

staff developm
ent

market power

Organizations should consider open source for the
scalability, the lack of license liability, the flexibility,
the empowerment of staff, and the market power of
the organization.

start small

build a prototype

join the open source
community

have fun!

Start small, build a prototype, join the communities
around the software you use,
and always always try to have fun.

thanks

References

http://oreilly.com/catalog/opensources/book/stallman.html
http://en.wikipedia.org/wiki/Copyleft
http://www.linux.org/people/linus_post.html
http://groups.google.com/group/comp.os.minix/browse_thread/thread/76536d1fb451ac60
http://www.oracle.com/us/corporate/pricing/technology-price-list-070617.pdf
http://www.iwar.org.uk/comsec/resources/worms/cumulative-ts.gif
http://geekpadshow.com/files/2009/09/nerd-venn-diagram-9420-1252236207-2.jpg
http://icma.org/en/icma/knowledge_network/documents/kn/Document/301435/
Software_Selection_in_an_OpenSourceOriented_Government_IT_Department
http://www.waurisa.org/conferences/2010/Agenda.html
http://www.waurisa.org/conferences/2010/presentations/
316_Jared_Erickson_Open_Source_GIS_at_Pierce_County.pdf
http://yakima.co.pierce.wa.us/CriticalAreas/AreaAnalysis.cfm?
ParcelNum=6175000081&CFID=196536&CFTOKEN=25584369

