
Hey, what’s new,
in PostGIS Two?

Point oh.

pramsey@opengeo.org

Point oh.

PostGIS 1.5.0
February 4, 2010

So...
The last major release of PostGIS was in early
2010

PostGIS 2.0.0
April 3, 2012

And PostGIS 2.0 was released just last week...
(right?)

26 months

So... it took us 26 months to birth our latest
major version.

22 months

And it takes an elephant 22 months to gestate a
new elephant.

Why so long?
Why 2.0?

Why not 1.6?

And you might have some valid questions about
the process...
Why so long, why 2.0, why not 1.6?
Not just because we like big round numbers.

PostGIS 2.0 does not
guarantee backwards

compatibility

The big round number means that this release is
not backwards compatible. That’s a big deal. We
don’t do that very often. 1.X lasted 7 years.

?*&@#^&@!!!
Why!?!

And I understand this might not be the most
popular thing to do...

PostGIS 2.0 uses a
new serialization

But the main reason we lost backward
compatibility is that we use a new serialization...

?*&@#^&@!!!
What does that

mean?!?

OK, yes, this is getting down into the weeds...

Serialization:
A recipe to convert
a memory structure

into an array of
bytes on disk

A serialization is the format used for on-disk
storage. It’s a recipe for converting in-memory
objects into bytes on-disk.

An in-memory model is something like the simple
features object model, with discrete parts that
might be stored in different parts of memory, and
pointers tying them all together.

 WKB
Polygon

Ring 1 Ring 2

A serialization is a contiguous sequence of bytes.
The OGC well-known binary format is an example
of a serialization.

PostGIS 1.X
serialization had

three deficiencies...

But why change? The old serialization had a few
drawbacks...

VARHDR

TYPE [BSZMTTTT]

SRID?

FLOAT BOX?

xmin

ymin

xmax

ymax

DOUBLE
ORDINATES

PO
ST

G
IS 1.X

NPOINTS

The old serialization started up with a “type
byte” (in yellow) that included both the
dimensionality information and the geometry type
number. That’s a lot of information to pack into 8
bits.

...only 8 bits for...
1,2 dimensionality (has Z? has M?)

3 box flag (has box?)

4 SRID flag (has SRID?)

5,6,7,8 geometry type (2^4 = 16)

Two bits for dimensions, two bits for box/srid
flags, and four bits for types.
Four bits can hold the numbers zero to 15.
type 1 is point, then there is linestring, polygon,
multipoint, multilinestring, multipolygon,
geometrycollection
circularstring, compoundcurve, curvepolygon,
multicurve, multisurface
triangle, tin, polyhedral surface (15)
That’s it, we’re out of space for new types!

...only 2 dimensions
for index boxes...

Fixed-size X/Y bounding box stored on
the serialized geometry.

And the bounding box was fixed at four floats, so
only room to index the X/Y plane.

...and, unaligned
ordinates.

?*&@#^&@!!!
“unaligned”?!?

And finally, because of that type byte, the
coordinates are not double aligned.
OK, that “aligned” could use some explanation....

Memory is accessed at addresses, counted in
bytes. Data types have sizes expressible in bytes.
If the data is stored in memory at an address that
is evenly divisible by the size of the data type it is
said to be “aligned”. Aligned data can be
accessed faster and more directly than unaligned
data. On some architectures (RISC) it cannot be
directly accessed at all, it has to be copied into an
aligned location first.

VARHDR

TYPE [BSZMTTTT]

SRID?

FLOAT BOX?

xmin

ymin

xmax

ymax

DOUBLE
ORDINATES

PO
ST

G
IS 1.X

NPOINTS

If you overlay the double precision alignment
boundaries over the old serialization, you can see
pretty quickly that the coordinates don’t fall on
the alignment boundaries.

PostGIS 2.X
serialization has
room to grow!

The new serialization addresses all these
drawbacks.

VARHDR

FLAGS [BZMG????]
SRID [3 Bytes]

FLOAT BOX?

xmin

ymin

xmax

ymax

DOUBLE
ORDINATES

PO
ST

G
IS 2.X

TYPE

NPOINTS

By re-ordering the contents of the serialization
and expanding a few components,
we’ve gotten space for more type numbers (whole
integer!),
we have achieved double alignment for the
coordinates,
and we have space for a version number (four
spare bits in the “flags”) so we can avoid future
dump/reload situations.

Pull, up!
Pull, up!
Pull, up!

Uh, oh, I think this talk is getting a little too
technical!!!!....

New serialization
meant...

So, *because* we changed the serialization, we
had to do some other work...

New WKT parser
New WKB parser

The old well-known-text and well-known-binary
parsers were both tightly bound to the old
serialization. They were also both pretty hard to
read and maintain. So, they have been completely
re-written. They are now more generic and easier
to support.

New WKT emitter
New WKB emitter

Similarly the well-known-text and well-known-
binary emitters were bound to the old
serialization and have been completely re-written.

SQL/MM
Part 3: Spatial

Since we were re-writing them anyways, this
provided an opportunity to add in full support for
both consuming and producing ISO SQL/MM
versions of well-known-text and well-known-
binary.

• POINT(0 1)

• POINT(0 1 1)

• POINT(0 1 1 2)

• POINTM(0 1 2)

• POINT (0 1)

• POINT Z (0 1 1)

• POINT ZM (0 1 1 1)

• POINT M (0 1 2)

“Extended”
 WKT

ISO WKTOGC WKT

• POINT(0 1)

• POINT(0 1)

• POINT(0 1)

• POINT(0 1)

1.5
ST_AsText

2.0
ST_AsText

1.5/2.0
ST_AsEWKT

The main thing to note is that the ISO forms
support 3d and 4d geometry, and that the
ST_AsText() function now emits those extra
dimensions. The ST_GeomFromText and other
text consumers will accept any of the forms (OGC
WKT, EWKT, or ISO WKT).

• POINT = 1

• POINT Z = 1
| 0x80000000

• POINT M = 1
| 0x40000000

• POINT ZM = 1
| 0xC0000000

• POINT = 1

• POINT Z = 1001

• POINT M = 2001

• POINT ZM = 3001

“Extended”
 WKB ISO WKBOGC WKB

• POINT = 1

• POINT = 1

• POINT = 1

• POINT = 1

1.5
ST_AsBinary

2.0
ST_AsBinary

1.5/2.0
ST_AsEWKB

ISO SQL/MM also defined new type numbers and
support for 3d and 4d geometry. Again, the
standard ST_AsBinary function now emits ISO
well-known-binary.

In the 3rd Dimension

And hey, all this new core support for 3D is good,
because we have a lot of new support for the third
dimension in other functions.

ST_3dDistance(
 'POINT Z (0 0 0)',
 'POINT Z (0 3 4)'
)

ST_Distance(
 'POINT Z (0 0 0)',
 'POINT Z (0 3 4)'
)

3

5
For example, you can now do 3D distance
calculations on geometries.

• ST_3dDistance(geom, geom)

• ST_3dLength(geom)

• ST_3dClosestPoint(geom, geom)

• ST_3dPerimeter(geom)

• ST_3dIntersects(geom, geom)

• ST_3dDWithin(geom, geom, tolerance)

The collection of 3D enabled functions has grown
a great deal. Distance, length, nearest points,
even intersects and within.

&& &&&vs

But all those functions won’t be good for much on
large data sets, without support for 3D and 4D
indexes, and good news, the new serialization
means we can and do support high dimensional
indexes.

CREATE INDEX idx
ON tbl USING GIST
(col)

CREATE INDEX idx
ON tbl USING GIST
(col gist_geometry_ops_nd)

&&

&&&

CREATE INDEX idx
ON tbl USING GIST
(col gist_geometry_ops_2d)

Creating a higher-dimension index looks almost
exactly like creating a standard 2D one, the only
difference is you have to specify your “opclass” as
“gist_geometry_ops_nd”. You don’t have to
specify opclass for 2D indexes, since the 2D
opclass is the default, but it’s there under the
covers.

SELECT *
FROM tbl
WHERE
 geom &&&
 ST_3DMakeBox(
 ‘POINT Z (0 0 0)’,
 ‘POINT Z (1 1 1))

So, an index-enabled 3D query You’d think that with all these amazing changes,
that would be it, but wait there’s more!....

New 3D Types!

•TRIANGLE

•TIN

•POLYHEDRALSURFACE

We also have 3D types to go with those new
functions and indexes.

New 3D Formats!

•ST_AsX3D(geom)

•ST_AsGML(3, ...)

•Also...
• ST_AsText(geom)

• ST_AsBinary(geom)

And new 3D formats to write those 3D objects out
to the wire.

POLYHEDRALSURFACE

When I first heard about PolyhedralSurface, I
asked “What the heck good is that?”

And I was told hey, what about 3D buildings. Yep!

and MORE!!

yet

That must be all, right? Heck no!
I wanted to show you some real examples of new
PostGIS 2.0 features in action,

so I went to my favorite country, Canada

and favorite province, British Columbia

93G

and favorite part of British Columbia, Prince
George, and I downloaded some landuse data for
one mapblock

It looks like this, the yellow is urban area, and the
redish stuff is new logging

and I went to load it, and wow! there was even
more new functionality... a new design for the
shape GUI!

I connected to the database Chose my shape file

Set the target table name Added another shape file! Yes, the GUI now
supports batch loading of multiple files. Then I
clicked on “Import” and in it went.

Close observers will have noticed an “Export” tab
there too!
Click export, choose tables.

Hit the export button and out it goes!

So, now my landuse data was loaded up.

cded=# \d btm

 Table "public.btm"
 Column | Type
------------+------------------------------
 gid | integer
 plu_label | character varying(100)

 geom | geometry(MultiPolygon,26910)
Indexes:
 "btm_pkey" PRIMARY KEY, btree (gid)
 "btm_geom_gist" gist (geom)

Take a look at the table description...
The geom column is no longer just “geometry”

geometry(MultiPolygon,26910)

It’s “a multipolygon with srid 26910”!
This is enabled by the magical “typmod”
improvement

TypMod

• Geometry([Type[Dims]], [SRID])

• Geometry(PointZ, 4326)

• Geometry(LineString, 26910)

• Geometry(PolygonZM)

All geometry columns now have extra information
in the PostgreSQL system tables, flagging the
geometry type, the dimensionality and the spatial
reference ID.

TypMod

CREATE TABLE mytbl (
 id SERIAL PRIMARY KEY,
 geom Geometry(Point, 4326),
 name VARCHAR(64),
 gender CHAR(1)
);

That means that it’s possible to fully define a
geometry column during the CREATE TABLE
statement.

TypMod

• GEOMETRY_COLUMNS
becomes a view

• GEOMETRY_COLUMNS
is always up to date

• Changing a column SRID
becomes a type-cast

Which in turn means that the geometry_columns
metadata table can be turned into a VIEW on the
system tables. So it is always up to date! And even
crazier, you can change geometry types and SRIDs
for a table using typecasting in one step.

TypMod

• Problem: The type of the “btm”
geometry column is
geometry(MultiPolygonZM, 3005)

• Solution: Convert the “btm” table
to UTM 10, and strip off the Z
coordinate.

The classic problem is you import your data in
one SRID and want to transform it to another SRID
and geometry type. In PostGIS 1.5, solving the
problem was a multi-step affair: constraints had
to be dropped, table updates run,
geometry_columns updated, and constraints re-
added.

TypMod
ALTER TABLE btm
 ALTER COLUMN geom
 SET DATA TYPE
 geometry(MultiPolygon,26910)
 USING
 ST_Force_2D(
 ST_Transform(geom, 26910))

Now it’s a one-step process.
Just alter the geometry column type, and supply
the functions necessary to alter the data to match
the new column type.

cded=# select * from geometry_columns
 where f_table_name = 'btm';

-[RECORD 1]-----+-------------
f_table_catalog | cded
f_table_schema | public
f_table_name | btm
f_geometry_column | geom
coord_dimension | 2
srid | 26910
type | MULTIPOLYGON

After running the update, I check the
geometry_columns view, and lo and behold the
metadata matches the new SRID and geometry
type automatically!

So, my data is in, I want to do some analysis with
it...

I find your lack of raster slides...

...disturbing.

And this is a PostGIS 2.0 talk, and I know, I
haven’t yet talked about the headline new
features in PostGIS 2.0.

wget \
--recursive \
--level=1 \
--accept=zip \
http://pub.data.gov.bc.ca/datasets/175624/93g/

So here we go... I went to the BC open data site
and downloaded all the elevation grids for my test
map block.

for f in *.zip; do
 unzip $f
done

Unzipped them all

ls *.dem > demfiles.txt

Created a list of files.

gdalbuildvrt \
 -input_file_list demfiles.txt \
 cded.vrt

Used that list of files to create a GDAL “Virtual
Raster Table”

gdalwarp \
 -t_srs "EPSG:26910" \
 -tr 25 25 \
 cded.vrt elevation.tif

Converted that GDAL virtual raster into a unified
elevation file.

gdaldem slope \
 elevation.tif \
 slope.tif

Calculated the a slope grid from that raster file

raster2pgsql \
 -s 26910 \
 -t 64x64 \
 -I -C \
 elevation.tif \
 elevation \
 | psql cded

Then loaded the elevation file into PostGIS raster
using the new “raster2pgsql” data loading utility.

raster2pgsql \
 -s 26910 \
 -t 64x64 \
 -I -C \
 slope.tif \
 slope \
 | psql cded

And also loaded the slope the same way. Boom, I had elevation and slope.

Actually I had this, thousands of wee slope and
elevation tiles in slope and elevation tables.

3287

I wanted to find out the elevation of my old home
town, Prince George, so I identified the polygon
that made up the urban area.

Raster Stats
 SELECT elevation.rid,
 (ST_SummaryStats(
 ST_Clip(rast, geom))).* AS stats
FROM elevation, btm
WHERE ST_Intersects(geom,
ST_ConvexHull(rast))
AND btm.gid = '3287';

And ran this query to pull the elevation summary
from the elevation table. Note that this is a join,
between the elevation raster table and the land
use vector table.
Also note the use of the ST_Clip() function that
clips raster data to a vector geometry. From the
clipped rasters, we pull summary statistics for
each tile we found that intersected the urban area
polygon.

 rid | count | sum | mean | stddev | min | max
------+-------+---------+------------------+-------------------+-----+-----
 1057 | 156 | 120726 | 773.884615384615 | 4.90808012292948 | 766 | 783
 1058 | 1107 | 847213 | 765.323396567299 | 9.33392487618769 | 740 | 795
 806 | 19 | 14141 | 744.263157894737 | 1.74241530076282 | 741 | 747
 807 | 2441 | 1670049 | 684.165915608357 | 23.3205737899415 | 646 | 747
 808 | 3447 | 2187294 | 634.550043516101 | 19.3894261265235 | 564 | 665
 889 | 437 | 326068 | 746.151029748284 | 8.29849756695029 | 733 | 763
 890 | 2651 | 1975783 | 745.297246322143 | 10.7607949343472 | 724 | 775
 891 | 1194 | 844514 | 707.298157453936 | 35.6796637500309 | 652 | 761
 892 | 3501 | 2217883 | 633.499857183662 | 17.4651180485982 | 604 | 683
 893 | 29 | 17932 | 618.344827586207 | 0.841831421774771 | 617 | 620
 973 | 2194 | 1662631 | 757.808113035552 | 10.8249563018557 | 734 | 788
 974 | 2838 | 2123651 | 748.291402396054 | 8.24522862041882 | 730 | 771
 975 | 7 | 5135 | 733.571428571429 | 2.77010277566648 | 731 | 739
 302 | 47 | 27416 | 583.31914893617 | 8.62728571742926 | 577 | 599
 554 | 2480 | 1541358 | 621.515322580645 | 23.3670175066056 | 603 | 726
 386 | 1327 | 792837 | 597.46571213263 | 15.2290274803421 | 573 | 642
 387 | 945 | 557908 | 590.378835978836 | 13.6254654488559 | 571 | 618
 470 | 2980 | 1844361 | 618.913087248322 | 12.2157683552516 | 605 | 692
 471 | 3622 | 2194184 | 605.793484262838 | 7.66220737969739 | 571 | 617
 472 | 2600 | 1525269 | 586.641923076923 | 10.2227053167976 | 568 | 603
 473 | 2569 | 1466943 | 571.017127286882 | 2.8895084376145 | 566 | 583
 474 | 515 | 292805 | 568.553398058252 | 1.39575052253661 | 566 | 572
 555 | 4096 | 2476845 | 604.698486328125 | 2.70527509392248 | 592 | 614
 556 | 4096 | 2396923 | 585.186279296875 | 9.64497811080429 | 567 | 603
 557 | 4029 | 2323665 | 576.734921816828 | 7.88558188802066 | 565 | 616
 558 | 640 | 366110 | 572.046875 | 3.50459380447651 | 566 | 584
 638 | 266 | 162511 | 610.943609022556 | 7.39593317820404 | 604 | 639
 639 | 3676 | 2213440 | 602.132752992383 | 5.27448991752 | 590 | 632
 640 | 4096 | 2413994 | 589.35400390625 | 9.96807274266748 | 567 | 634
 641 | 2421 | 1400520 | 578.488228004957 | 8.19014313978709 | 565 | 594
 723 | 1824 | 1158957 | 635.393092105263 | 30.9553225109134 | 594 | 703
 724 | 3113 | 1862712 | 598.365563764857 | 19.3806443727861 | 564 | 651
 725 | 1 | 586 | 586 | 0 | 586 | 586
(33 rows)

Boom! Why are there so many rows? Because the
urban polygon intersected lots and lots of the
little raster chips in the elevation table. To get the
final answer the rows must be summarized...
(more complex SQL) so

627.75

Average Elevation of
Prince George

you’ll have to take my word that the answer is
627.75 meters. But look what we’ve done! A
raster/vector analysis problem run entirely inside
the database.

Core Raster Concept:
Raster objects are

small chunks that can be
manipulated just like

vector objects.

Two core concepts to remember working with
raster. First, rasters are modelled as large
collections of tiny chunks of raster.

Core Raster Concept:
Raster support is there to

enable analysis, not
visualization.

Second, the point of rasters in the database is to
enable analysis, bringing together your raster and
vector data to get an answer.

Environment Analysis
“Logging on steep slopes”

We can do real analyses with this data. We have a
data set that shows where logging is. We have a
data set of slopes. Logging on steep slopes is
bad, because it allows greater run-off of top-soil
and degrades future forest growth. Where is this
happening in our area?

We have slope. We have logging areas.

We can join the two tables, finding the slope grid
chips that intersect logging areas. And then
summarize to find the actual steep slope logging.

CREATE TABLE steep_logging AS
WITH
counts AS (
 SELECT
 btm.gid,
 ST_SummaryStats(ST_Clip(rast, geom)) AS stats
 FROM slope, btm
 WHERE
 ST_Intersects(geom, ST_ConvexHull(rast))
 AND
 btm.plu_label = 'Recently Logged'
),
stats AS (
 SELECT gid,
 Sum((stats).count*(stats).mean) AS num,
 Sum((stats).count) AS denom
 FROM counts
 GROUP BY gid
),
steep AS (
 SELECT gid, num/denom AS slope
 FROM stats
 WHERE denom > 0 AND num/denom > 10
)
SELECT
 btm.*, steep.slope
FROM
 btm JOIN steep ON (btm.gid = steep.gid);

The SQL is... a bit complex.

But it works, and we get a result, inside the
database!

ST_AsPNG(raster....)
ST_AsTIFF(raster....)
ST_AsJPEG(raster....)
ST_AsGDALRaster(raster....)
ST_Polygon(raster,band_num)
ST_MakeEmptyRaster
ST_AsRaster(geometry)
ST_Band(raster....)
ST_AsRaster
ST_Band
ST_Reclass(raster....)
ST_Resample(raster....)
ST_Transform(raster....)
ST_MapAlgebra(raster....)

There are lots of new functions in PostGIS 2.0 for
handling rasters, including fancy things like
output to image formats, polygonization,
reprojection, and even map algebra.

Raster Caveats

• Performance is still not great for most
analytical operations

• Performance is very sensitive to tile
sizes

• Functions signatures can get very
complex

Even though this is PostGIS 2.0, it’s important to
remember that raster is a brand new feature. If it
was not being released inside PostGIS, it would
probably have a number like 0.5. There is much
work still to do.

Raster Promise
• Integrated raster/vector analysis is very

powerful

• Elevation draping, map algebra, cost
surfaces, are all possible from the base
type

• Many functions are implemented in
PL/PgSQL: performance upside is very
high

However, the potential is really big. Integrated
raster/vector analysis is powerful, new features
like draping and cost surfaces can be built on the
new type, and the performance enhancements
still to be done are not rocket science, they are
re-implementations of functions in native C.

But that’s not all! There’s still more new features!
Here’s the grab bag of new and gimmicky
features.

ST_FlipCoordinates(g)

Before After

You can flip your X and Y coordinates. Useful
when you load long/lat data as lat/long!

ST_ConcaveHull(g, %, h)

100% 99% 90%
allowing holes

You can generate hulls that shrinkwrap the input
features, a concave rather than convex hull.

ST_Snap(g1, g2, d)

Before After

You can snap nearby features together (work in
progress).

ST_Split(g1, g2)
g1 = splittee
g2 = splitter

Before
After

You can split a polygon using an input line.

ST_OffsetCurve(g, d)

Original Offset -2 Offset +2

You can generate offset curves to the left or right
of input lines.

ST_MakeValid(g)
POLYGON((-1 -1, -1 0, 1 0, 1 1, 0 1, 0 -1, -1 -1))

MULTIPOLYGON
(((-1 -1,-1 0,0 0,0 -1,-1 -1)),

((0 0,0 1,1 1,1 0,0 0)))

And you can finally do something about invalid
features! ST_MakeValid will even fix my favorite
invalid polygon, the figure eight.

ST_AsLatLonText(g)

ST_AsLatLonText('POINT (-3.2342 -2.32)')

2°19'12.000"S 3°14'3.120"W

No more writing lat/lon output functions in PHP,
you can use an in-built function to get all kinds of
standard formatting for lat/lon coordinates.

ST_RemoveRepeatedPoints(g)

ST_SharedPaths(g)

ST_CollectionHomogenize(g)

ST_GeomFromGeoJSON(t)

And that’s not even mentioning removing
repeated points, or finding co-joint lines, or
cleaning collections, or creating geometries from
JSON inputs. Wow!

Are we done? Hell no!

Hello,
nearest

neighbour!

Having a good neighbor is important, and
knowing your nearest neighbors is very very
useful too!

Indexed KNN

• KNN = K Nearest Neighbour

• Index-based tree search

• Restricted to index keys
(a.k.a. bounding boxes)

• Points: exact answer

• Others: box-based answer

PostGIS 2.0 how has support for nearest-neighbor
indexed searching. For very large tables, with
irregular densities, this can be a huge
performance win.

2,082,965 GNIS Points

So, here’s an example I put together, loading all
the USA named geographic points, 2M of them.

Find one point, in this case Reedy Creek.

Indexed KNN
SELECT id, name, state, kind
FROM geonames
ORDER BY
 geom <->
 (SELECT geom FROM geonames
 WHERE id = 4781416)
LIMIT 10

Here’s how we find the 10 nearest names to
Reedy Creek. Note the use of the funny arrow-like
operator in the ORDER BY clause and the LIMIT.
You have to use ORDER BY and you have to LIMIT.

 id | name | state | kind
---------+-----------------------------------+-------+------
 4781416 | Reedy Creek | VA | STM
 4794583 | Woodland Heights Baptist Church | VA | CH
 4759577 | Forest Hill Park | VA | PRK
 6495576 | Fairfield Inn And Stes Rich Nw | VA | HTL
 7239038 | Greater Brook Road Baptist Church | VA | CH
 4778121 | Patrick Henry Elementary School | VA | SCH
 4746788 | Berryman United Methodist Church | VA | CH
 4794519 | Woodland Park | VA | PPL
 4780425 | Progressive Holiness Church | VA | CH
 4774149 | Mount Calvary Cemetery | VA | CMTY
(10 rows)

Time: 9.723 ms

But most importantly, note how fast we get back
the 10 nearest entries from this 2M record table.

2,082,965
GNIS points

9.723 ms

10 nearest points

Again for emphases. 2M points. 10 nearest.
9.7ms.

KNN
<->
• Calculate ordering distance between

box centers

<#>

• Calculate ordering distance between
box edges

Because KNN searches the index, and the index is
bounding box based, the operators work on box
distances. There are two ways to measure
distance between two boxes: the distance
between the box centers (the arrow operator), and
the distance between the nearest box edges (the
box operator).

KNN

• ORDER BY geom <-> [geometry literal]

• LIMIT [#]

• If you have a geometry index defined this
will work!

As long as you have a geometry index defined,
and PostgreSQL >= 9.0 this will work!

Thanks,
neighbour!

Thanks neighbor!

Highlights!
• New serialization! ($!@#!!!!)

• 3-d and 4-d indexing!

• ISO WKT and WKB

• 3D types (surfaces, TINs)

• Enhanced GUI loader/dumper

• Typmod, magical geometry_columns

• Raster type and functions!

• Indexed nearest neighbour (KNN)

So to recap!
...........
And the very best part of PostGIS 2.0?

It comes with a 100% money back guarantee!

Thanks!

Thanks, and I promise our next release will come
faster than a baby elephant!

