Hey, what’s new,

: 2
1n POSESHIOE Two: PostGIS 1.5.0

February 4, 2010

pramsey@opengeo.org

So...
The last major release of PostGIS was in early
2010

PostGIS 2.0.0

April 3, 2012 26 months

And PostGIS 2.0 was released just last week... So... it took us 26 months to birth our latest
(right?) major version.

Why so long?
Why 2.0?
Why not 1.6?

And it takes an elephant 22 months to gestate a And you might have some valid questions about
new elephant. the process...

Why so long, why 2.0, why not 1.6?

Not just because we like big round numbers.

PostGIS 2.0 does not Q@A @!!]
guarantee backwards Whu!?!
compatibility yee
The big round number means that this release is And | understand this might not be the most
not backwards compatible. That’s a big deal. We popular thing to do...

don’t do that very often. 1.X lasted 7 years.

2% N I/
PostGIS 2.0 uses a r&@# " &@!!!

= What does that
new serialization e
meanc!:
But the main reason we lost backward OK, yes, this is getting down into the weeds...

compatibility is that we use a new serialization...

Serialization: S — ——
A recipe to convert s ‘
a memory structure (] o oamscacs] o] [
into an array of
bytes on disk o saan) s

A serialization is the format used for on-disk

storage. It’s a recipe for converting in-memory
objects into bytes on-disk.

An in-memory model is something like the simple
features object model, with discrete parts that
might be stored in different parts of memory, and
pointers tying them all together.

WKB
“ Polvgon - PostGIS 1.X
Ring 1 Ring 2 o« 7o .
“ > - serialization had
e A ol three deficiencies...
A serialization is a contiguous sequence of bytes. But why change? The old serialization had a few
The OGC well-known binary format is an example drawbacks...

of a serialization.

VARHDR
TYPE [BSZMTTTT]

...only 8 bits for...

X1 SID1SOd

~;;1-;--§ FLOAT BOX?
p— 1,2 dimensionality (has Z? has M?)
| SRID? 3 box flag (has box?)
’ 4 SRID flag (has SRID?)
NPOINTS 5,6,7,8 geometry type (274 = 16)
DOUBLE
ORDINATES
The old serialization started up with a “type Two bits for dimensions, two bits for box/srid
byte” (in yellow) that included both the flags, and four bits for types.
dimensionality information and the geometry type Four bits can hold the numbers zero to 15.
number. That’s a lot of information to pack into 8 type 1 is point, then there is linestring, polygon,
bits. multipoint, multilinestring, multipolygon,

geometrycollection

circularstring, compoundcurve, curvepolygon,
multicurve, multisurface

triangle, tin, polyhedral surface (15)

That’s it, we’re out of space for new types!

...only 2 dimensions ...and, unaligned

for index boxes... ordinates.
Fixed-size X/Y bounding box stored on ? *& @ # A& @ ., .’ !
the serialized geometry. .
“unaligned”?!?
And the bounding box was fixed at four floats, so And finally, because of that type byte, the
only room to index the X/Y plane. coordinates are not double aligned.

OK, that “aligned” could use some explanation....

Memory is accessed at addresses, counted in
bytes. Data types have sizes expressible in bytes.
If the data is stored in memory at an address that
is evenly divisible by the size of the data type it is
said to be “aligned”. Aligned data can be
accessed faster and more directly than unaligned
data. On some architectures (RISC) it cannot be
directly accessed at all, it has to be copied into an
aligned location first.

VARHDR
TYPE [BSZMTTTT]

xmin

]lll;ll :

----- ~ FLOAT BOX?

SRID?

X1 SID1SOd

NPOINTS

DOUBLE
ORDINATES

If you overlay the double precision alignment
boundaries over the old serialization, you can see
pretty quickly that the coordinates don’t fall on
the alignment boundaries.

PostGIS 2.X
serialization has
room to grow!

The new serialization addresses all these

drawbacks.

VARHDR

SRID [3 Bytes]

xmin

ymin

ymax

Xmax

FLAGS [BZMG?2227]

FLOAT BOX?

TYPE

NPOINTS

DOUBLE
ORDINATES

XC SID1SOd

By re-ordering the contents of the serialization
and expanding a few components,
we’ve gotten space for more type numbers (whole

integer!),

we have achieved double alignment for the
coordinates,
and we have space for a version number (four

spare bits in the “flags”) so we can avoid future

dump/reload situations.

/
Pull, up! New serialization

Pull, up!
P ll’ P ; meant...
u , up.
Uh, oh, | think this talk is getting a little too So, *because* we changed the serialization, we

technicall!ll.... had to do some other work...

New WKT parser
New WKB parser

The old well-known-text and well-known-binary
parsers were both tightly bound to the old
serialization. They were also both pretty hard to
read and maintain. So, they have been completely
re-written. They are now more generic and easier

to support.

New WKT emitter
New WKB emitter

Similarly the well-known-text and well-known-
binary emitters were bound to the old
serialization and have been completely re-written.

1.5/2.0 1.5 2.0

ST AsSsEWKT ST AsText ST AsText
“Extended”
Iso WKT OGC WKT ISO WKT
RS e POINT(0 1) e POINT(0 1) e POINT (0 1)
e POINT(011) e POINT(0 1) e POINTZ(011)

SQL/MM
Part 3: Spatial

POINT(0 11 2) e POINT(0 1) POINTZM (0111)

POINTM(0 1 2) e POINT(0 1) POINTM (012)

Since we were re-writing them anyways, this The main thing to note is that the ISO forms
provided an opportunity to add in full support for support 3d and 4d geometry, and that the

both consuming and producing ISO SQL/MM ST_AsText() function now emits those extra
versions of well-known-text and well-known- dimensions. The ST_GeomFromText and other
binary. text consumers will accept any of the forms (OGC

WKT, EWKT, or ISO WKT).

1.5/2.0
ST_AsEWKB

“Extended”
WKB

e POINT =1

e POINTZ =1
| 0x80000000

e POINTM =1
| 0Xx40000000

e POINTZM =1
| 0xC0000000

1.5
ST_AsBinary

OGC WKB

e POINT =1
e POINT =1
e POINT =1

e POINT =1

2.0
ST_AsBinary

ISO WKB
POINT =1
POINT Z = 1001
POINT M = 2001

POINT ZM = 3001

ISO SQL/MM also defined new type numbers and

support for 3d and 4d geometry. Again, the
standard ST_AsBinary function now emits ISO

well-known-binary.

e

TN

”~
..

BUCK ROGERS

e In

the 3rd Dimension™

And hey, all this new core support for 3D is good,
because we have a lot of new support for the third
dimension in other functions.

ST Distance(
'POINT 7 (00 O)' 3 e ST 3dDistance(geom, geom)
b
'POINT Z (O 3 4)' e ST_3dLength(geom)
) e ST 3dClosestPoint(geom, geom)
ST_3dDistance(e ST_3dPerimeter(geom)
'POINT Z (O o O)', 5 e ST 3dIntersects(geom, geom)
'"POINT Z (0 3 4)' o
) e ST 3dDWithin(geom, geom, tolerance)
For example, you can now do 3D distance The collection of 3D enabled functions has grown
calculations on geometries. a great deal. Distance, length, nearest points,

even intersects and within.

&& vs &&&

But all those functions won’t be good for much on
large data sets, without support for 3D and 4D
indexes, and good news, the new serialization
means we can and do support high dimensional
indexes.

CREATE INDEX idx
& & ON tbl USING GIST
(col)gist_geometry_ops_2d)

CREATE INDEX idx

&&& ON tbl USING GIST

(col gist_geometry_ops_nd)

Creating a higher-dimension index looks almost
exactly like creating a standard 2D one, the only
difference is you have to specify your “opclass” as
“gist_geometry_ops_nd”. You don’t have to
specify opclass for 2D indexes, since the 2D
opclass is the default, but it’s there under the
covers.

SELECT *
FROM tbl
WHERE But
geom &&&
ST 3DMakeBox(T:,
‘POINT Z (0 0 0)’,
‘POINTZ (111))

¢ Watk::

c
— &
-

\/

“— O

ER
OR

So, an index-enabled 3D query You’d think that with all these amazing changes,
that would be it, but wait there’s more!....

New 3D Types! New 3D Formats!
e ST_AsX3D(geom)
o TRIANGLE o ST_ASGML(3, ...)
o TIN e Also...
e POLYHEDRALSURFACE e ST_AsText(geom)
e ST AsBinary(geom)
We also have 3D types to go with those new And new 3D formats to write those 3D objects out

functions and indexes. to the wire.

POLYHEDRALSURFACE

When | first heard about PolyhedralSurface, |
asked “What the heck good is that?”

That must be all, right? Heck no!

| wanted to show you some real examples of new

PostGIS 2.0 features in action,

so | went to my favorite country, Canada

93G

and favorite province, British Columbia and favorite part of British Columbia, Prince
George, and | downloaded some landuse data for
one mapblock

It looks like this, the yellow is urban area, and the and | went to load it, and wow! there was even
redish stuff is new logging more new functionality... a new design for the
shape GUI!

PostGIS Conr

Import. lExport |

Import List I |

Shapefile [Schema [Tz

PostGIS Connection

Username: |pramsey

Password: I.......

Server Host: [localhost

Database: [cded

Log Wind

Connecting: h: localhq 1 OK

password="#krrrrk dbna

Connection succeeded.

| connected to the database

I+

i

LxXluSelect.a Shape Flle
7| <« | pramsey | Downloads ched
Places | Name v | Size | Modified
©\ Search) wgettest 07/03/2012
® Recently Used W BT™ | hp
B pramsey ["] DRA_LINESP_line.shp 38.4 MB 02/03/2012
[Desktop
[File system

Shape Files (*.shp) [»
x Cancel .~ 0pen I

Chose my shape file

18.0.0 (XuRostGIS Shapeflle mport Exporihanager
< inai PostGIS C
C i) I View connection details... | ’
mpornt |Bml Import I Export |
Import List
— e ————
|Schema ITabIe Geo Column |SRID |Mom~
JUsers/pramsey/Downloads/cded/BTM_PLU_V1 public btm geom 3005 Create [m} I
[Users/pramsey/Downloads/cded/DRA_LINESP_line public roads geom 3005 Create O |
o
Add Fie | Add File
Ogtions. I mport I About l Cancel I Options... Import About Cancel |
Log Window Log Wind
Connacting: host=locabost pert=5432 urar=pramaey password="swesewe dhname=cded B Connecting: host=localhost port=5432 user=pramsey password="++#++ dbname=cded -
Connection succeeded Connection succeeded.
" - e - ing: host=localhost port=5432 user=pramsey password= "tk dbname=cded
Connecting: host=locabost port=5432 user=pramsey passwordawsemewe dhnames= cded Connecting P P y P
Connection succeeded Connection succeeded.
Connecting: host=localhost port=5432 user=pramsey password="##kttt+ dbname=cded

Set the target table name Added another shape file! Yes, the GUI now
supports batch loading of multiple files. Then |
clicked on “Import” and in it went.

ann) PoMGIS Shapefile Import/Export Manager 8.0.0

POMOIS C PoStGIS Conr

W I View connection details...

Schema |Tab|e Import Export

public btm Export List

public elevation_tiles |rm | Schema Table Geo Column |Filename Rm
public geotbl public sheds geom sheds

public raster_columns
public roads
public roads_geographic

public sheds
public steep_logging I _ —— Add Table
Options... Cancel | Options... About cancel

Log window 1 only show tables with geo columns Log Wind
Connecting: host=localhost - Connecting: host=localhost port=5432 user=pramsey password="#**#+t+ dbname=cded
Connecton succeeded Connection succeeded.
Connecting: host=locathost @QK Connecting: host=localhost port=5432 user=pramsey password="#**#+t+ dbname=cded
Connection succeeded Connection succeeded.
Connecting: host«locathost 7 Connecting: host=localhost port=5432 user=pramsey password="##tkttk dbname=cded
Connecting: host=localhost powerwers i ‘AL - Connecting: host=localhost port=5432 user=pramsey password="##**kik dbname=cded
Connecton succesded Connection succeeded.
Connecting: host=locathost port=5432 user=pramuey password="wswswse dhname=cded Connecting: host=localhost port=5432 user=pramsey password="#*#++++ dbname=cded

Connecting: host=localhost po 432 user=pramsey password
Connecting: host=localhost pol 432 user=pramsey password:
Connecting: host=localhost port=5432 user=pramsey password="#trtk dbname=cded

0]

Close observers will have noticed an “Export” tab Hit the export button and out it goes!
there too!
Click export, choose tables.

cded=# \d btm

Table "public.btm"
Column I Type
____________ Mmoo
gid | integer
plu_label | character varying(100)

geom k:éggEEEE%CMultiPolygon,26910)
Indexes:

"btm_pkey" PRIMARY KEY, btree (gid)
"btm_geom_gist" gist (geom)

So, now my landuse data was loaded up. Take a look at the table description...
The geom column is no longer just “geometry”

TypMod

e Geometry([Type[Dims]], [SRID])
e Geometry(PointZ, 4326)
e Geometry(LineString, 26910)
e Geometry(PolygonZM)

geometry(MultiPolygon,26910)

It’s “a multipolygon with srid 26910”! All geometry columns now have extra information
This is enabled by the magical “typmod”

in the PostgreSQL system tables, flagging the
improvement

geometry type, the dimensionality and the spatial
reference ID.

TypMod

CREATE TABLE mytbl (
id SERIAL PRIMARY KEY,
geom Geometry(Point, 4326),
name VARCHAR(64),

gender CHAR(1)

);

That means that it’s possible to fully define a

geometry column during the CREATE TABLE
statement.

TypMod

e GEOMETRY COLUMNS
becomes a view

e GEOMETRY_COLUMNS
is always up to date

e Changing a column SRID
becomes a type-cast

Which in turn means that the geometry_columns
metadata table can be turned into a VIEW on the
system tables. So it is always up to date! And even
crazier, you can change geometry types and SRIDs
for a table using typecasting in one step.

TypMod

e Problem: The type of the “btm”
geometry column is
geometry(MultiPolygonZM, 3005)

e Solution: Convert the “btm” table
to UTM 10, and strip off the Z
coordinate.

The classic problem is you import your data in
one SRID and want to transform it to another SRID
and geometry type. In PostGIS 1.5, solving the
problem was a multi-step affair: constraints had
to be dropped, table updates run,
geometry_columns updated, and constraints re-
added.

TypMod

ALTER TABLE btm
ALTER COLUMN geom
SET DATA TYPE
geometry(MultiPolygon,26910)
USING
ST Force 2D(
ST_Transform(geom, 26910))

Now it’s a one-step process.

Just alter the geometry column type, and supply
the functions necessary to alter the data to match
the new column type.

cded=# select * from geometry_columns

where f_table_name = 'btm';
-[RECORD 1]----- Fommmmmmm oo
f_table_catalog | cded
f_table_schema | public
f_table_name | btm
f_geometry_column | geom
i |
I
I

MULTIPOLYGON

After running the update, | check the
geometry_columns view, and lo and behold the
metadata matches the new SRID and geometry
type automatically!

So, my data is in, | want to do some analysis with
it...

| find your lack of raster slides...

H .
HER
wget \ = mmm Data
--recursive \
--level=1 \
--accept=zip \

http://pub.data.gov.bc.ca/datasets/175624/93g/

...disturbing.

And this is a PostGIS 2.0 talk, and | know, | So here we go... | went to the BC open data site
haven’t yet talked about the headline new

and downloaded all the elevation grids for my test
features in PostGIS 2.0. map block.

for f in *.zip; do
unzip $f 1s *.dem > demfiles.txt
done

Unzipped them all Created a list of files.

gdalwarp \
-t_srs "EPSG:26910" \
-tr 25 25 \
cded.vrt elevation.tif

gdalbuildvrt \
-input_file_list demfiles.txt \
cded.vrt

Used that list of files to create a GDAL “Virtual Converted that GDAL virtual raster into a unified
Raster Table” elevation file.

rasterZpgsql \
-s 26910 \
gdaldem slope \ -t 64x64 \
elevation.tif \ -I -C\
slope.tif elevation.tif \
elevation \
| psql cded
Calculated the a slope grid from that raster file Then loaded the elevation file into PostGIS raster

using the new “raster2pgsql” data loading utility.

rasterZpgsql \
-s 26910 \
-t 64x064 \
-I -C\
slope.tif \
slope \
| psql cded

And also loaded the slope the same way. Boom, | had elevation and slope.

Actually | had this, thousands of wee slope and | wanted to find out the elevation of my old home
elevation tiles in slope and elevation tables. town, Prince George, so | identified the polygon
that made up the urban area.

Raster Stats

SELECT elevation.rid,
(ST_SummaryStats(
ST_Clip(rast, geom))).* AS stats

FROM elevation, btm

WHERE ST_ Intersects(geom,

ST ConvexHull(rast))

AND btm.gid = '3287';

And ran this query to pull the elevation summary
from the elevation table. Note that this is a join,
between the elevation raster table and the land
use vector table.

Also note the use of the ST_Clip() function that
clips raster data to a vector geometry. From the
clipped rasters, we pull summary statistics for
each tile we found that intersected the urban area

polygon.

555

|
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

120726
847213
14141
1670049
2187294
326068
1975783
844514
2217883
17932
1662631
2123651
5135
27416
1541358
792837
557908
1844361
2194184
1525269
1466943
292805
2476845

—_—— e e — o —

773.884615384615
765.323396567299
744.,263157894737
684.165915608357
634.550043516101
746.151029748284
745.297246322143
707.298157453936
633.499857183662
618.344827586207
757.808113035552
748.291402396054
733.571428571429

583.31914893617
621.515322580645

597.46571213263
590.378835978836
618.913087248322
605.793484262838
586.641923076923
571.017127286882
568.553398058252
604.698486328125

4.90808012292948
9.33392487618769
1.74241530076282
23.3205737899415
19.3894261265235
8.29849756695029
10.7607949343472
35.6796637500309
17.4651180485982
0.841831421774771
10.8249563018557
8.24522862041882
2.77010277566648
8.62728571742926
23.3670175066056
15.2290274803421
13.6254654488559
12.2157683552516
7.66220737969739
10.2227053167976
2.8895084376145
1.39575052253661
2.70527509392248

min | max
_____ fommmm
766 | 783
740 | 795
741 | 747
646 | 747
564 | 665
733 | 763
724 | 775
652 | 761
604 | 683
617 | 620
734 | 788
730 | 771
731 | 739
577 | 599
603 | 726
573 | 642
571 | 618
605 | 692
571 | 617
568 | 603
566 | 583
566 | 572
592 | 614

Boom! Why are there so many rows? Because the
urban polygon intersected lots and lots of the

little raster chips in the elevation table. To get the

final answer the rows must be summarized...
(more complex SQL) so

Average Elevation of

Core Raster Concept:
Prince George

Raster objects are

627.75 small ghunks that can be

manipulated just like
vector objects.

you’ll have to take my word that the answer is Two core concepts to remember working with
627.75 meters. But look what we’ve done! A raster. First, rasters are modelled as large
raster/vector analysis problem run entirely inside collections of tiny chunks of raster.
the database.

Core Raster Concept:
Raster support is there to
enable analysis, not
visualization.

Second, the point of rasters in the database is to

enable analysis, bringing together your raster and
vector data to get an answer.

Environment Analysis
“Logging on steep slopes”

We can do real analyses with this data. We have a
data set that shows where logging is. We have a
data set of slopes. Logging on steep slopes is
bad, because it allows greater run-off of top-soil
and degrades future forest growth. Where is this
happening in our area?

We have slope. We have logging areas.

SyRanEENE)

frasid

CREATE TABLE steep_logging AS
WITH
counts AS (
SELECT
btm.gid,
ST_SummaryStats(ST_Clip(rast, geom)) AS stats
FROM slope, btm
WHERE
ST_Intersects(geom, ST_ConvexHull(rast))
AND
btm.plu_label = 'Recently Logged'’

We can join the two tables, finding the slope grid The SQL is... a bit complex.
chips that intersect logging areas. And then
summarize to find the actual steep slope logging.

1

A

e

But it works, and we get a result, inside the

database!

ST AsPNG(raster....)

ST AsTIFF(raster....)

ST AsJPEG(raster....)

ST AsGDALRaster(raster....)
ST_Polygon(raster,band_num)
ST _MakeEmptyRaster
ST_AsRaster(geometry)
ST_Band(raster....)
ST_AsRaster

ST Band

ST Reclass(raster....)
ST_Resample(raster....)

ST Transform(raster....)
ST_MapAlgebra(raster....)

There are lots of new functions in PostGIS 2.0 for
handling rasters, including fancy things like
output to image formats, polygonization,
reprojection, and even map algebra.

Raster Caveats

e Performance is still not great for most
analytical operations

e Performance is very sensitive to tile
sizes

e Functions signatures can get very
complex

Even though this is PostGIS 2.0, it’s important to
remember that raster is a brand new feature. If it
was not being released inside PostGlS, it would
probably have a number like 0.5. There is much
work still to do.

Raster Promise

e Integrated raster/vector analysis is very
powerful

e Elevation draping, map algebra, cost
surfaces, are all possible from the base

type
e Many functions are implemented in

PL/PgSQL: performance upside is very
high

However, the potential is really big. Integrated
raster/vector analysis is powerful, new features
like draping and cost surfaces can be built on the
new type, and the performance enhancements
still to be done are not rocket science, they are
re—-implementations of functions in native C.

ST_FlipCoordinates(g)

NEW FEATURE

STANDARD
FEATURE

BASIC
EXPECTATION

GIMMICK

Before After

But that’s not all! There’s still more new features! You can flip your X and Y coordinates. Useful
Here’s the grab bag of new and gimmicky when you load long/lat data as lat/long!
features.

ST ConcaveHull(g, %, h)

90%
allowing holes

oooooooooooooooooooooooo
...........................

.
......
%% 00, "toee,

) LTS
oooooo
00.....

s »
ooooooooo
Lo *e
..........
........
.....
.....
oooooo
.............

°
......
e %
o
.........
......
''''''
© °
...........
oooooooo
o

00000000000
ooooooo
00000000000000000000000000000

You can generate hulls that shrinkwrap the input

features, a concave rather than convex hull.

ST _Snap(gi, g2, d)

<>

Before After

You can snap nearby features together (work in

progress).

ST _Split(g1, g2) ST _OffsetCurve(g, d)

g1 = splittee
g2 = splitter

After
Before Original Offset -2 Offset +2

You can split a polygon using an input line. You can generate offset curves to the left or right
of input lines.

ST MakeValid(g) ST AsLatLonText(g)

POLYGON((-1-1,-10,10,11,01, 0 -1, -1 -1))

ST AsLatLonText('POINT (-3.2342 -2.32)")

2°19'12.000"S 3°14'3.120"W
MULTIPOLYGON 9 3143

(((-1-1,-1 0,0 0,0 -1,-1 -1)),
((0 0,01,11,1 0,0 0)))

And you can finally do something about invalid No more writing lat/lon output functions in PHP,
features! ST_MakeValid will even fix my favorite you can use an in-built function to get all kinds of
invalid polygon, the figure eight. standard formatting for lat/lon coordinates.

ST_RemoveRepeatedPoints(g)
ST_SharedPaths(g)
ST_ CollectionHomogenize(g)

ST GeomFromGeoJSON(t)

And that’s not even mentioning removing Are we done? Hell no!
repeated points, or finding co-joint lines, or

cleaning collections, or creating geometries from

JSON inputs. Wow!

Indexed KNN

e KNN = K Nearest Neighbour
e Index-based tree search

e Restricted to index keys
(a.k.a. bounding boxes)

e Points: exact answer

e Others: box-based answer

PostGIS 2.0 how has support for nearest-neighbor
indexed searching. For very large tables, with
irregular densities, this can be a huge
performance win.

Having a good neighbor is important, and
knowing your nearest neighbors is very very

useful too!

¢ S . O N . segd . » < e
2,082,965 GNIS Points e : AT LRI ’
. L4 . . . ', Y
- 5 fy
N | Featuw 4 Vake
*0 geonamaes
v mame Reedy Creek
» (Actions)
» (Derived)
d 4731416
kind s™
name Reedy Creek
state VA
'
L
Help
K
-~

So, here’s an example | put together, loading all Find one point, in this case Reedy Creek.
the USA named geographic points, 2M of them.

id | name | state | kind
Indexed KNN 9 [Lot
4781416 | Reedy Creek | VA | STM
. . 4794583 | Woodland‘Heights Baptist Church | VA | CH
SELECT id, name, state, kind 4759577 | Forest Hill Park I VA | PRK
6495576 | Fairfield Inn And Stes Rich Nw | VA | HTL
FROM geonames 7239038 | Greater Brook Road Baptist Church | VA | CH
4778121 | Patrick Henry Elementary School | VA | SCH
ORDER BY 4746788 | Berryman United Methodist Church | VA | CH
- 4794519 | Woodland Park | VA | PPL
geom <-> 4780425 | Progressive Holiness Church | VA | CH
(SELEETgeom FROM geonames 4774149 | Mount Calvary Cemetery | VA | CMTY
. (10 rows)
WHHERE id = 4781416)
LIMIT 10 Time: 9.723 ms
Here’s how we find the 10 nearest names to But most importantly, note how fast we get back
Reedy Creek. Note the use of the funny arrow-like the 10 nearest entries from this 2M record table.

operator in the ORDER BY clause and the LIMIT.
You have to use ORDER BY and you have to LIMIT.

2,082,965
GNIS points

10 nearest points

9.723 ms

Again for emphases. 2M points. 10 nearest.

9.7ms.

KNN

<=->

e Calculate ordering distance between
box centers

<#>

e Calculate ordering distance between
box edges

Because KNN searches the index, and the index is
bounding box based, the operators work on box
distances. There are two ways to measure
distance between two boxes: the distance
between the box centers (the arrow operator), and
the distance between the nearest box edges (the
box operator).

KNN

Thanks,
neighbour!

e ORDER BY geom <-> [geometry literal]
e LIMIT [#]

e If you have a geometry index defined this
will work!

As long as you have a geometry index defined, Thanks neighbor!
and PostgreSQL >= 9.0 this will work!

) Al//7 . .
w¥© Highlights!
A L
e New serialization! ($!@#!!!!)

e 3-d and 4-d indexing!

e ISO WKT and WKB

e 3D types (surfaces, TINS)

e Enhanced GUI loader/dumper

e Typmod, magical geometry_columns
e Raster type and functions!

e Indexed nearest neighbour (KNN)

So to recap! It comes with a 100% money back guarantee!

And the very best part of PostGIS 2.0?

Thanks, and | promise our next release will come
faster than a baby elephant!

