
LIDAR in PostgreSQL
with PointCloud
Paul Ramsey <pramsey@opengeo.org>

Over the past 5 months, I have
been working on the building
blocks for storing LIDAR data in
PostgreSQL, and leveraging it for
analysis with PostGIS. That means
LIDAR types and functions it the
database, and loading utilities to
get data into and out of the
database.

This development has been largely
funded by Natural Resources
Canada, who are planning to use
PostgreSQL and their database for
managing national LIDAR
inventories.

Motivation

Billions and Billions

So, why would anyone want to put
LIDAR in a database? What’s the
motivation here?

First, you can’t just stuff LIDAR
point clouds into existing PostGIS
types like the Point type, there’s
just too much of it. A county can
generate hundreds of millions of
points, a state can generate
billions.

(X, Y, Z)

(X, Y, Z, Intensity,
ReturnNumber,

NumberOfReturns,
Classification,

ScanAngleRank, Red,
Green, Blue)

Second, LIDAR is multi-
dimensional. And not just X,Y,Z.

A dozen or more dimensions PER
POINT, is not unusual.
Unfortunately, the
multidimensionality of LIDAR is not
fixed either. Some LIDAR clouds
have four dimensions. Others have
fourteen. So billions of points with
many dimensions: you can’t stuff
this into existing PostGIS or
columnar tables.

Everything is related to
everything else, but
near things are more
related than distant

things.

Demotivation

But we don’t want to just throw up
our hands, because LIDAR point
clouds have geographic location,
which means if we can get them
into a spatial database, we can
mash them up with other spatial
entities, thanks to Tobler’s Law. So
there’s value in the exercise.

On the other hand, I’m on the
record as not wanting to put
rasters into the database, and
LIDAR pointclouds share a lot of the
features of rasters ...

 Column |Type
------------+-------------------------
 gid | integer
 area | double precision
 perimeter | double precision
 gunitice_ | double precision
 gunitice_i | double precision
 gunit_id | integer
 gunit_labe | character varying(12)
 gmap_id | smallint
 geom | geometry(Polygon,26910)

 Column | Type
--------+------------
 id | integer
 pa | pcpatch(1)

LIDAR data is not very relational.
Compare the table definition of a
PostGIS feature table, which has
lots of interesting non-spatial data
related to the spatial column.

With the table of pointcloud data,
which is just row upon row of patch
blocks, basically blobs in the
database. There’s not a lot of
interesting stuff to query about
there!

Billions and Billions

Also, LIDAR is really big! Billions
and billions of points! That’s going
to result in really huge tables,
which are far more fiddly to
manage and back-up in a database
than they would be on the
filesystem as a bunch of files.

And finally, LIDAR is fairly static.
Updates aren’t granular and a bit at
a time, they tend to be bulk re-
surveys, just like raster data.

Remotivation

 Column |Type
--------+------------
 id | integer
 pa | pcpatch(1)

Which means, I need some
remotivation before I can go on!

But wait, actually, inside those rows
and rows of binary blocks there’s
quite a lot of detailed information,

(X, Y, Z, Intensity,
ReturnNumber, NumberOfReturns,

Classification,
ScanAngleRank,

Red, Green, Blue)

Everything is related to
everything else, but
near things are more
related than distant

things.

lots of dimensions per point and,
unlike raster, LIDAR use cases do
tend to filter and sub-set data
using those higher dimensions, the
use cases aren’t all bulk retrieval.

And Tobler’s Law is still there, so
the same motivation that got me to
accept raster in the database
applies to LIDAR in the database:
once it’s there you unlock all kinds
of cross-type analysis: vector to
raster, raster to vector, raster to
pointcloud, pointcloud to vector,
etc.

Just Do It
OK, how do we store LIDAR in the
database?

First, we can’t store one point per
row, because a table with billions of
rows will be too big to use
practically: the index will be too
big, the table size will be very large
with one dimension per column, in
general there is a cost for a query
iterating over a row, which we want
to minimize.

PcPoint(pcid)
PcPatch(pcid)

So, for storage, we organize the
points into patches of several
hundred points each. This reduces
a table of billions into a table of
10s of millions, which is more
tractable.

Practically, we need two new types:
the pointcloud point, and the
pointcloud patch. PcPoint and
PcPatch. The point type is for
filtering and for casts to PostGIS.
The patch type is what we use to
store data in tables.

X Y Z I RGB

17 packed bytes

7 8 = 56 bytes as doublesx

<pc:dimension>
 <pc:position>1</pc:position>
 <pc:size>4</pc:size>
 <pc:description>
 X coordinate as a long integer.
 You must use the scale and offset
 information of the header to determine
 the double value.
 </pc:description>
 <pc:name>X</pc:name>
 <pc:interpretation>int32_t</pc:interpretation>
 <pc:scale>0.01</pc:scale>
 <pc:offset>0</pc:offset>
 <pc:active>true</pc:active>
</pc:dimension>

The goal of LIDAR storage is to try
and keep things small, because
there’s so much data. So data are
packed into a byte array, using as
few bytes as possible to represent
each value. Compare a packed form
to a form that uses doubles for
every dimension: there’s no
comparison.

The description of the how bytes
are packed into a point is done
using an XML schema document,
which uses the same format
adopted by the open source PDAL
project. This is an “X” dimension...

Note the “scale” and “offset” values,
which allow data to be more
efficiently packed into narrower
byte space. Multiple dimensions are

POINTCLOUD_FORMATS

 Column | Type
--------+---------
 pcid | integer
 srid | integer
 schema | text

• PcPatches are collections of...

• PcPoints which are packing of dimensions...

• Described in XML schema documents...

• Stored in the pointcloud_formats table...

• Tied together with a “pcid” that relates patches
and points to the schemas necesary to interpret
them!

Each schema document is stored in
a row in the pointcloud_formats
table, which assigns every schema
and spatial reference system a
unique “point cloud id”, “pcid”.
So....

to recap...!

So What

CREATE EXTENSION
pointcloud;

CREATE EXTENSION
postgis;

CREATE EXTENSION
pointcloud_postgis;

depends on

de
pe

nd
s

on
But enough about internals, how do
we work with pointcloud data in
SQL?

Pointcloud only supports PgSQL 9.1
and up, so we only support
installation via the “extension”
method. Enable the pointcloud
extension. If you want to do PostGIS
integration, enable PostGIS, then
enable pointcloud_postgis. Rather
than having pointcloud depend on
PostGIS, point cloud is
independent, and the
pointcloud_postgis extension

 Schema | Name | Type
--------+--------------------+-------
 public | geography_columns | view
 public | geometry_columns | view
 public | pointcloud_columns | view
 public | pointcloud_formats | table
 public | raster_columns | view
 public | raster_overviews | view
 public | spatial_ref_sys | table

INSERT INTO pointcloud_formats (pcid, srid, schema)
VALUES (1, 0,
'<?xml version="1.0" encoding="UTF-8"?>
<pc:PointCloudSchema
 xmlns:pc="http://pointcloud.org/schemas/PC/1.1"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <pc:dimension>
 <pc:position>1</pc:position>
 <pc:size>4</pc:size>
 <pc:description>X coordinate.</pc:description>
 <pc:name>X</pc:name>
 <pc:interpretation>int32_t</pc:interpretation>
 <pc:scale>0.01</pc:scale>
 </pc:dimension>
 <pc:dimension>
 <pc:position>2</pc:position>
 <pc:size>4</pc:size>
 <pc:description>Y coordinate.</pc:description>
 <pc:name>Y</pc:name>
 <pc:interpretation>int32_t</pc:interpretation>
 <pc:scale>0.01</pc:scale>
 </pc:dimension>
 <pc:dimension>
 <pc:position>3</pc:position>
 <pc:size>4</pc:size>
 <pc:description>Z coordinate.</pc:description>
 <pc:name>Z</pc:name>
 <pc:interpretation>int32_t</pc:interpretation>
 <pc:scale>0.01</pc:scale>
 </pc:dimension>
 <pc:dimension>
 <pc:position>4</pc:position>
 <pc:size>2</pc:size>
 <pc:description>Pulse return magnitude.</pc:description>
 <pc:name>Intensity</pc:name>
 <pc:interpretation>uint16_t</pc:interpretation>
 <pc:scale>1</pc:scale>
 </pc:dimension>
 <pc:metadata>
 <Metadata name="compression">none</Metadata>
 </pc:metadata>
</pc:PointCloudSchema>'
);

We have a lot of tables and views
after enabling those extensions,
most of which are from PostGIS, but
there are two from pointcloud. The
pointcloud_formats table, as we
mentioned, holds the schema
information for the points. The
pointcloud_columns view acts like
the geometry_columns view,
showing an up-to-date list of what
tables have pointcloud data in

Before we can create an points or
patches, we need a schema to
describe the dimensions we are
going to hold. This is a simple
four-dimensional schema, with X,
Y, Z as 32-bit integers and Intensity
as a 16-bit integer. We assign it
PCID = 1.

CREATE TABLE pcpoints (
 id SERIAL PRIMARY KEY,
 pt PcPoint(1)
);

INSERT INTO pcpoints (pt)
VALUES (
 PC_MakePoint(1,
 ARRAY[-126, 45, 34, 4]
)
);

Now we can create a points table
(note, this is just for
demonstration, we will store
patches, not points, when in
production).

And we can create a new point to
insert into the table. The
PC_MakePoint function lets you
turn an array of doubles into a
PcPoint.

SELECT pt FROM pcpoints;

0101000000
0400

94110000C8CEFFFF
480D0000

SELECT pt FROM pcpoints;

01
01000000

0400

94110000
C8CEFFFF

480D0000

endian

pcid

x

y

z

intensity

And if we select the point back out
of the table, we get the well-known
binary format, which looks obscure
as usual,

But actually just has a short header,
giving the endianness and the pcid,
and then the data itself. This is
little endian data (intel processor),
with the least significant bit first.

SELECT PC_AsText(pt)
 FROM pcpoints;

{"pcid":1,
 "pt": [-126, 45, 34, 4]}

SELECT PC_Get(pt, ‘z’)
 FROM pcpoints;

34

But the “as text” function returns a
more obviously human readable
format (or at least a computer
interchangable one). Rather than
ape OGC well-known text, I’ve
decided the emitting JSON is more
likely to allow people to use pre-
existing parsing functions.

You can pull any dimension from a
point using the dimension name.
This feature is the gateway to point
filtering, as we’ll see.

SELECT
 ST_AsText(pt::geometry)
FROM pcpoints;

POINT Z (-126 45 34)

INSERT INTO pcpoints (pt)
VALUES (
 PC_MakePoint(1,
 ARRAY[-127, 46, 35, 5]
)
);

If you have the pointcloud_postgis
extension enabled, you can cast
pcpoints to postgis points, which is
useful for visualization or
integration analysis.

If we add one more point to our
points table, we can use the two
points in there to make a two-point
patch, with a patch aggregate,
So first we add a second point,

CREATE TABLE pcpatches
AS
 SELECT
 PC_Patch(pt) AS pa
 FROM pcpoints;

SELECT PC_AsText(pa)
FROM pcpatches;

{"pcid":1,
 "pts":[
 [-126,45,34,4],
 [-127,46,35,5]
]}

And then here we can use the
PC_Patch function to aggregate our
two points into a new patch, in a
new table.

And this is what it looks like in
JSON. So we’ve taken a set of points
and aggregated them into a patch.
And we can also do the reverse,
taking a patch and turning it into a
tuple set of points,

SELECT
 PC_AsText(
 PC_Explode(pa))
FROM pcpatches;

{"pcid":1,
 "pt":[-126,45,34,4]}
{"pcid":1,
 "pt":[-127,46,35,5]}

So What

using the PC_Explode function.
You can use this facility of
exploding patches into points, and
then aggregating them back into
patches, to filter by any attribute or
pass the points into PostGIS for
spatial filtering too.

Now it’s possible....... that you
aren’t the kind of person to be
excited by SQL examples, so here’s
some real world data loading and
processing using PostgreSQL
pointcloud!

!"#$%&'()$
*+"!$

*,)-./(#0!$
*,&1-2',34$

!"#$!
!
"#$%&#'()*)+$,-./+0"(1#$-&#!
2/-&#'(.3$))&#!
"#$%&#'()*)+$,-./+0"(#&4"&#!
!

In order to real-world data loaded
into the database, we use the PDAL
open source LIDAR processing
tools, which let us handle multiple
input formats (in this case LAS files)
and output formats (in this case
PostgreSQL Pointcloud) and also
apply processing chains to the
points on the way through.

For the Natural Resources Canada
project, I wrote a PostgreSQL
Pointcloud driver for PDAL, which is
now available in the PDAL source
repository.
In addition to the reader and writer,
we have to use the chipper to break
the input file into small chips
suitable for database storage.

<?xml version="1.0" encoding="utf-8"?>
<Pipeline version="1.0">
 <Writer type="drivers.pgpointcloud.writer">
 <Option name="connection">
 host='localhost' dbname='pc' user='pramsey'</Option>
 <Option name="table">mtsthelens</Option>
 <Option name="srid">26910</Option>
 <Filter type="filters.chipper">
 <Option name="capacity">400</Option>
 <Filter type="filters.cache">
 <Option name="max_cache_blocks">3</Option>
 <Option name="cache_block_size">32184</Option>
 <Reader type="drivers.las.reader">
 <Option name="filename">st-helens.las</Option>
 <Option name="spatialreference">EPSG:26910</Option>
 </Reader>
 </Filter>
 </Filter>
 </Writer>
</Pipeline>

Table "public.mtsthelens"

 Column | Type
--------+------------
 id | integer
 pa | pcpatch(1)
Indexes:
 "mtsthelens_pkey"
 PRIMARY KEY, btree (id)

The example data was a 420Mb LAS
file of Mt St Helens, with 12 million
points in it.
I used this PDAL pipeline file for the
load. Note that it uses a chipping
filter (in yellow) between the reader
and the writer to break the file up
into smaller patches for database
storage. The writer driver (in blue)
needs a connection string and
destination table name at a

When the load is done we have a
table like this, with a primary key
and patch data,

SELECT
 Count(*)
 Sum(PC_NumPoints(pa))
FROM mtsthelens;

 count | sum
-------+----------
 30971 | 12388139

And we can confirm all 12 million
points are loaded, and they are
stored in 30971 patches, which
look

like this. Kind of hard to see what’s
going on, the physical context

is this,
and we can look a bit closer

and see the patch lines, like this. In
this load, the chipper ensured that
each patch holds about 400 points,
though we could go higher, up to
about 600 points without passing
the PostgreSQL page size
Now let’s do some analysis!

Mount St Helens is a bit of an odd
mountain, because it doesn’t have
a nice pointy summit. It’s got a rim,
around a caldera.

Question: How tall is the rim?

I digitized a line around the rim, so
I can calculate an average elevation.
I’m going to get the average
elevation of every point within 15
meters of my line.

WITH patches AS (
 SELECT pa
 FROM
 mtsthelens m,
 mtsthelens_rim r
 WHERE
 PC_Intersects(m.pa,
 ST_Buffer(r.geom, 15))
),

It’s a multi-stage query, so I use
my favourite SQL syntactic sugar,
the “WITH” clause to do it in an
understandable order... first I get
all the patches that intersect my 15
meter buffer of the rim line...

Which looks like this, several
hundred patches.

points AS (
 SELECT PC_Explode(pa)
 AS pt
 FROM patches
),

And if you look closer, it looks kind
of like this, all the patches that
touch the buffer.

Then I take those patches and
explode them into a set of points...

filtered_points AS (
 SELECT PC_Get(pt, 'z')
 AS z
 FROM points,
 mtsthelens_rim r
 WHERE
 ST_Intersects
 (pt::geometry,
 ST_Buffer(r.geom, 15))
)

And filter those points using the
buffer shape,
so here I’m pushing a cast into
PostGIS to run the ST_Intersects()
filter

Which gives us just the points
inside the buffer,

SELECT avg(z),
 count(z)
FROM filtered_points;

 avg | count

 2425.086 | 108736

And finally summarize the elevation
of the points, which tells us we had
108 thousand points, and an
average elevation of 2425 meters.

Which is odd,

 because Google says, that the
elevation of Mt St Helens is 2550
meters...
so, what’s going on? Let’s look at
all the points in our database that
are above 2500 meters

WITH points AS (
 SELECT PC_Explode(pa)
 AS pt
 FROM mtsthelens
)
SELECT pt::geometry
FROM points
WHERE
PC_Get(pt,'z') > 2500;

exploding all the patches and
finding just the points that are
higher than our elevation threshold

And we see that, actually the rim
isn’t flat, it’s tallest at the southern
end and slopes downwards to the
north,

which we can see by taking the
patches, and coloring them
thematically by their average point
elevation

which shows the rim sloping
downwards from a tallest point at
the south.

Compression: None

• <Metadata name="compression">
none
</Metadata>

• Byte-packed points, ordered point-by-point.

• Equivalent to compressed LAS.

Compression: Dimensional

• <Metadata name="compression">
dimensional
</Metadata>

• Each dimension separately compressed.

• Run-length, common bits, or zlib.

• 4-5 times smaller than uncompressed LAS.

In order to lower I/O load,
compressing the data a bit is an
important concern.

The compression of a PcPatch is
determined by the compression
entry in the schema document.
There are three compression modes
right now. Compression of “none”
stores the data just as packed
bytes.

Dimensional compression is the
default. Using dimensional
compression, it’s possible to pack
400 to 600 points into a single
patch without going over the 8KB
PostgreSQL page size. Not
exceeding the page size can be a
performance boost, since larger
objects are copied into a side table
in page-sized chucks and accessed
in a two-phase process.

Compression: GeohashTree

• <Metadata name="compression">
ght
</Metadata>

• Points sorted into a prefix-tree based on
geohash code

• Compression from 2-4 times, depending on
parameters

PC_Functions

• PC_Get(pcpoint, dimension) → numeric

• PC_Explode(pcpatch) → pcpoint[]

• PC_Union(pcpatch[]) → pcpatch

• PC_Patch(pcpoint[]) → pcpatch

• PC_Intersects(pcpatch, geometry)

• pcpatch::geometry, pcpoint::geometry

GHT compression is still
experimental. The compression
aspects are still not as good as
dimensional, but because the
points are ordered, there’s some
good possibilities for high speed
spatial processing and overview
generation.

I’ve shown a number of functions in
action, but some of the most
important are the
get function, to interogate points,
explode to break patches into
points,
union to merge patches,
patch to merge points,
intersects to find spatial overlaps,
and
the casts into postgis geometry.

Future
• PC_Transform(pcpatch, pcid) → pcpatch

• PC_Intersection(pcpatch, geometry) →
pcpatch

• PC_Raster(pcpatch, raster, dimension) →
raster

• PC_FilterBetween(pcpatch, dim, min, max)
→ pcpatch

• PDAL writer flexibility
PDAL reader queries

Get It

• Pointcloud
http://github.com/pramsey/pointcloud

• PDAL
http://github.com/PDAL/PDAL

• Questions?

There’s lots of work on the drawing
board,
...
...

And it’s ready for use and abuse
right now.

